New Directions in Cryptography: Twenty Some Years Later

(or Cryptograpy and Complexity Theory: A Match Made in Heaven)

Shafi Goldwasser*

Abstract of Talk

In 1976 Diffie and Hellman published thair fun-
damental paper on New Directions in Cryptog-
raphy, in which they announced that “we stand
on the brink of a revolution in cryptography”.

Today, twenty some years later, we will sur-
vey some of the progress made in cryptography
during this time. We will especially focus on
the successful interplay between complexity the-
ory and cryptography, witnessed perhaps most
vividly by the developments in interactive and
probabilistic proof systems and in pseudo rad-
nom number generation. A list of topics to be
touched upon during the talk is included, fol-
lowed by refereneces in the bibliography.

FounpaTiONs oF CRYPTOGRAPHY. Complex-
ity theory based cryptography is based on the
existence of one-way functions. Reformulated, a
one-way function is a problem for which there is
an efficiently samplable distribution of instances
(to be used by the legal user), which are impos-
sible on the average to solve efficiently by any
probabilistic algorithm (the adversary). Taking
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efficient to mean polynomial time, basing cryp-
tography on complexity theory is thus possible
only if NP # BPP, although it is not known
to be a sufficient condition. The existence of an
N P-complete problem which can be shown as
hard on the average to solve as in the worst case
for some efficiently samplable distribution, is an
open problem.

In lieu of techniques for proving even worst

‘case non-linear lower bounds for natural NP

problem, our goal is construct a theoretical foun-
dation of the field by (1) finding the minimal
necessary and sufficient assumption for every
cryptographic application, and (2) constructing
schemes that can be proven at least as secure as
the minimal assumption necessary. The proofs
take the form of a “reduction” showing how
any break in the security of a system can be
transformed into a violation of the underlying
assumption.!. Defining what it means to be “se-
cure”, and what it means to “break” a crypto-
graphic system is an essential first step in estab-
lishing these foundations.

IDENTIFYING BUILDING Brocks IN Cryp-
TOGRAPY: Any cryptographic system we know
of (e.g encryption, signatures, oblivious trans-
fer, key exchange) can be shown to imply the
existence of one way functions. But, whereas

'Generally, we take efficient to mean probabilistic
polynomial time and inefficient to mean non-polynomial
time. We note however that security proofs are generally
not affected by changing the definition of ‘efficient * and
‘inefficient’. In a line of work initiated by [BKR, BGR],
parameterized reductions are used which tightly monitor
the cost of reductions made in'security proofs, facilitating
using arbitrary gaps between ‘inefficient’ and ‘efficient’.



one-way functions are necessary, they are not al-
ways sufficient. In addition to one-way functions
and trapdoor functions defined already in [DH],
one-way predicates, trapdoor predicates [GM],
oblivious transfer protocol[CK], bit commitment
protocol, secret sharing among n users[SH], and
computing with shares of a secret rather than
directly with data directly[GMW2, BGW], have
been identified as key building tools.It is inter-
esting to investigate the relation between these
primitives. In particular, in light of the work of
[AD] the question of whether trapdoor predicates
imply trapdoor functions is intriguing.

CANDIDATE HARD COMPUTATIONAL PROB-
LEMS: In order to actually use cryptosystems we
need to find natural candidates for the abstract
building blocks. The celebrated RSA function
[RSA] pointed the way to number theory where
several other suitable candidate hard problems
can be found such as factoring integers, com-
puting discrete log over finite fields, and distin-
guishing quadratic residues from quadratic non-
residues modlo composite numbers. Other candi-
date hard problems found suitable are comput-
ing elliptic logarithm in a group of points de-
fined by an elliptic curve over a finite field, de-
coding random linear error correcting codes, and
of late an array of computational problems over
lattices]AD, A, GGH]. Showing some relation
between average case computational difficulty of
the above problems and their worst case diffi-
culty, is a central theme in the the field. For
example, for fixed n, it can be proved that dis-
tinguishing between quadratic residues and non-
residues modulo n is as hard on the average as
in the worst case [GM]. Recently, [A] showed
that computing the shorest vector in lattice (in
which the shortest vector is unique upto a poly-
nomial factor) is as hard on the average (taken
over a certain samplable distribution of the lat-
tices) as in the worst case. It remains an in-
triguing open problem to show the existence of
an N P-complete problem which is as hard on
the average to solve as in the worst case for
some samplable distribution. An affirmative res-
olution would establish the existence of one-way
functions on P # NP.
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ProBaBiLisTIC METHODS: The use of proba-
bilistic cryptosystems has emerged as essential
for achieving security. It can be shown that
probabilistic encryption algorithms are necessary
in order to hide partial information about mes-
sages and handle arbitrary message spaces [GM].
Probabilistic signature algorithms are needed to
achieve unforgeability in face of chosen message
attacks [GMRi, 1, DN]. Another example is
the replacment of traditional passwords by in-
teractive and probabilistic identification proto-
cols where the key idea behind the security is
that the messages exachanged during the proto-
col are chosen randomly and independently ev-
ery time the identification protocol is repeated
[GMR, FFS, FS]. Interestingly, randomized vari-
ants of well-known algorithms such as RSA have
made their way by now into tool kits such as
SET(sceure elctronic transactions).

Two-PArTY PrROTOCOLS, ZERO KNOWLEDGE

The most exciting developments following
public-key cryptography has been the in the area
of protocols. First, there is a wide array of new
capabilities that have been developed, such as
secret-exchange, contract-signing, certified mail
[Bsecret, Bcoin, R77, EGL], and more gener-
aly any two-party computation can be performed
maintaing correctness and secrecy of the inputs
if oblivious transfer exists[Y2, K].

Second, the notion of zero-knowledge [GMR)
protocols and proofs [GMR] has trasformed the
field from an art form to a science. Zero knowl-
edge yields a formal way to prove security of
(or find mistakes in) protocols. Perhaps, more
importantly zero knowledge protocols make pos-
sible achieving cryptographic tasks deemed im-
possible before. For example, zero-knowledge
identification schemes allow an interactive pass-
word method in which all communication be-
tween the verifier (checking identity) and prover
(being identified) can be sent over an insecure
channel as mentioned above [FS]. Another ex-
ample is that non-interactive zero knowledge en-
ables building an encryption scheme which is
provably secure against chosen message attacks
if trapdoor functions exist [BFM, BDMP, 1].

More generally, any N P-statement can be



proved in zero knowledge if one-way permuta-
tions exist [GMW1]. This allows an automatic
translation of protocols proved secure for users
who follow protocol instructions, into protocols
which remain secure even when users may devi-
ate arbitrarily from the legal protocol.

INTERACTIVE AND PROBABILISTIC PROOF Sys-
TEMS The first zero knowledge protocols were of
simple Yes/No statements, in which one party
(the prover) convinced another party (the ver-
ifier) with overwhelming probability of correct-
ness that certain inputs were well formed (e.g.
an integer n was factor of 2 primes, or an in-
teger y was a quadratic residue mod n)?. Al
though simple NP proofs (i.e short witnesses)
existed for these particular statements, the pro-
tocols made it possible to hide all other knowl-
edge beside the correctness of the statement be-
ing proved. It became immediately apparent
that these were not only cryptographic tools, but
an alterantive way to prove statements correctly
with high probability via an interactive process
of questions and answers. The name “interactive
proof” was coined [GMRJ3, and the notion took
a life of its own seperate from security applica-
tions. What seemed obvious for cryptographic
purposes - that without randomization and in-
teraction certain statements cannot be proved
- turned out to be of much wider applicability
to complexity theory at large. In a famous se-
quence of works by [GMW2, LFKN, SH2] it was
first shown that a hard problem not known to
be in NP - graph non-isomorphism - has an in-
teractive proof, and finally that languages which
have interactive proofs are exactly the PSPACE
languages. Many other studies of the complexity
of interactive proofs exist (see references). Curi-
ously, the notion of Arthur-Merlin games which
seemed like a restricted form of interactive form
orginally, and was developed in [Ba] in order to
classify the complexity of certain matrix group

2The fact that the prover knew some auxilary knowl-
edge such as the factorization of n made it possible for
him to convince the verifier of these facts withour reveal-
ing any extra knowledge

3Mike Sipser suggested this name when first hearing of
a protocol to distinguish between composite numbers of
2 vs. 3 prime factors, thanks Mike!
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membership problems, turned out to coincide
with interactive proofs in generality.

An extention of the interactive proof model
to the multi-prover interactive proof model
[BGKW], where a number of non-communicating
provers are available, was made to enable prov-
ing that NP statements can be proved in zero
knowledge without resorting to any assumptions.
This model, has born even more surprising fruit
to complexity theory. In [BFL] it is proved
that languages which have multi-prover inter-
active proofs are exactly the NEXPTIME lan-
guages. By examining in a quantitative fashion
the amount of randomness used by the verifier,
and communication exchanged beween provers
and verifier in a multi-prover proof it was further
shown [BFLS, FGLSS, AS, ALMSS] (some of
these works use the oracle formulation of multi-
prover proofs [FRS]) that NP can be charac-
terized as languages provable by multi-prover
proofs with only logarithmic randomness and
constant answer size. A surprising connection
between multi-prover proofs with bounded re-
sources and approximation problems was found
in [FGLSS], and has subsequently enabled clas-
sifying the hardness of approximating a slew of
optimization problems.

In return, on occasion, the efficient probabilis-
tic proof checking methods developed for com-
plexity purposes in the above models, have made
their way back into cryptography [K2, M2].

Psepvo RanpoMNEsSs Randomness for chosing
secret keys was always recognized as an essential
part of the security of a cryptographic system.
Even more so today, when it is an integral part
of the algorithms themselves. Thus, very early it
became clear that good pseudo random number
generators are necessary. From a line of exciting
works [SH3, BM, Y] emerged the notion of cryp-
tographically strong pseudo random number gen-
erators (cspsrg’s) which produce sequences indis-
tinguishable from truly random sequences by any
probabilistic polynomial time algorithm. The
notion was accompanied by constructions of csp-
stg’s under the assumption that one-way permu-
tations exist, and particular efficient construc-
tion under specific number theoretic assumptions



[BBS, GMT, HSS, ACGS]. This culminated in
the work of [GL, HILL] showing that cspsrg ex-
istence is equivalent to the existence of one-way
functions. These constructs were shown by [Y]
to have immediate consequences on relation be-
tweeen probabilistic and deterministic complex-
ity classed. Pseudo random functions [GGM]
again were a reply to a cryptographic need of
randomly accessing a cspsrg by many indepen-
dent users, yet they have been used extensively
to establish impossibility results in learning the-
ory.

Proor TECHNIQUES: A few dominant proof
tecqhniques have emerged in security proofs.
Among which are, probabilistic polynmial-
time reducabilities between problems, simulation
proofs, the hybrid method, and random self re-
ducability. The latter was first observed as ap-
plied to the number theoretic problems of fac-
toring, discrete log, testing quadratic residuos-
ity, and the RSA function. For all of these prob-
lems, one could use the algebraic structure to
show how to map a particular input uniformly
and randomly to other inputs in such a way
that the answer for the original input can be
recovered from the answers for the targets of
the random mapping. A trivial example is for
RSA, fix n pq product of two prime num-
bers and (e,#(n)) = 1, ed = 1 mod n. Then,
given y = 2° mod n, it is easy to map y to a
random instance in Z;, picking z € Z; at ran-
dom and setting w = 2°y mod n, such that from
the inverse of w w? mod n,  can be recovered
by setting it to z = w?z~!. This random map-
ping can be thus utilized to find out x from y
in expected polynomial time, if RSA could be
inverted with non-negligible probability over Z
for this n. Showing that polynomials are ran-
domly self reducible over finite fields [BGW] [BF]
was applied to the low-degree polynomial repre-
sentations of Boolean functions, and has been a
central and useful technique in probabilistically
checkable proofs.

WHAT HAS THEORY OF CRYPTOGRAPHY DONE
FOR PRACTICE: Theory of cryptography is in-
herintly a field which is inspired by practical
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problems. The underlying setting which we work
with involves users and adversaries with varying
capabillites, attempting to model real life scenar-
ios. The practice of cryptography may be differ-
ent than most other fields of applied computer
science in that it truly uses theoretical ideas and
inventions to operate. The RSA function is, nat-
uraly, the overwhelming example. Other exam-
ples applied to practice already are zero knowl-
edge identification schemes, the idea of how to
catch double spending in Electronic Cash [CFN],
probabilistic signature methods in SET [BRsign],
verifiable secret sharing was applied to get split
key escrow methods in the key escrow arena [M1].

Furure DIRECTIONS IN CRYPTOGRAPHY: In-
terestingly enough, twenty years later we are
again at the brink of a revolution in cryptog-
raphy. We have moved from the setting of a pair
of sender and receiver who want to communicate
privately and authenticaly, to the setting of the
internet. This presents the challenge and possi-
bility of performing complex distributed compu-
tations among a large number of potentially un-
trusted parties, maintaing correctness, privacy,
authenticity, anonymity, and varying degrees of
un/traceability. In the last part of this talk, we
will discuss the topic of multi-party protocols (or
distributed cryptography) which models this sit-
uation, and some of the future research directions
posed by this setting.

We believe that the field of multi party compu-
tations is today where public-key cryptography
was ten years ago, namely an extremely power-
ful tool and rich theory whose real-life usage is at
this time only beginning but will become in the
future an integral part of our computing reality.
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