CONSTANT RATE INFUSIONS (CRI) - WHY?

CONS"

- 1. A more stable plane of analgesia with less incidence of break-through pain (which can be difficult to treat);
- 2. A lower drug dosage delivered at any given time, resulting in a lower incidence of dose-related side effects;
- 3. Greater control over drug administration (easy to change the dose);
- 4. Decreased need for stimulation of resting patients to administer drugs;
- 5. Decreased cost (when compared to technician time, needles, and syringes required for repeat injections).

Step 2

CONSTANT RATE INFUSIONS (CRI) – HOW? The Rules

Need to know two doses plus one rate:

Loading dose (mg/kg)
CRI dose (mg/kg/hr)
Fluid rate (ml/kg/hr)

CONSTANT RATE INFUSIONS – RULES CATTLE, SHEEP & GOAT

- Need to know two doses:
 - Loading eg. Xylaline 0.05 mg/kg IM, Ketamine 5 mg/kg IV & Lidocaine
 - CRI eg. Xylaline 0.05mg/kg/hr & Ketamine 5 mg/kg/hr
 - Lidocaine 1mg/kg/hr
 - Fluid rate for surgery 5-10 ml/kg/hr
- Choices:
 - Use formula –
 - Made easy rule:
 - 60 mg of any drug in 1L
 - X Flow Rate in ml/kg/hr delivers X mcg/kg/min of drug

Drug (mg) = [Infusion rate of the drug (mg/kg/hour) ÷Fluid infusion rate (ml/kg/hour)] x diluent volume

Formula for CRI

 $M = \frac{(D) (W) (V)}{(R) (16.67)}$

number of mg of drug to add to delivery fluid = dosage of drug in mcg/kg/min W = patient body weight in kg V = volume in ml of delivery fluid R = rate of delivery in ml/hr 16.67 = conversion factor

Step 4

CRI Drug (mg) = [Infusion rate of the drug (mg/kg/hour) ÷Fluid infusion rate (ml/kg/hour)] x diluent volume (ml)

MAINTENANCE RATE = 1-2 ml/kg/hr SURGICAL RATE = 5-10 ml/kg/hr

DRUG	CONCENTRATION	DOSE	CALCULATION
		Sheep/goat	(infusion rate 5ml/kg/hr)
Xylazine	2omg/ml	0.05mg/kg/hr	(0.05/5) x 1000 = 10mg = 0.5mls
Ketamine	100mg/ml	5mg/kg/hr	(5/5) x 1000 = 1000 = 10 mls
Lidocaine	20mg/ml	1mg /kg/hr	(1/5) x 1000 = 200 = 10mls
			100

Calculated of Drip Rate in drops per sec - $(ml/min \times drip factor)/60 = drops/sec$

50 kg Sheep drop/sec = (50 kg x 5ml/kg/hr x 20 drops/ml) / (60 min/hr x 60 sec/min) = 1.4 d/sec