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Let x(t)  , t = 0, …, n − 1 be n data points in the form of a time series, as shown in Figure B1. 

 

Figure B1. A given set of numerical data. 

Let (x(t), x(t + 1)), t = 0, …, n−1 be a point-cloud in the universe of discourse X = [xmin, xmax] so 

that xmin < min(x(t)| t  {0, …, n}) and xmax > max(x(t)| t ∈ {0, …, n}). Let A and B two square 

boundaries so that the vectors of the vertices of A and B (in the anti-clockwise direction) are ((xmin, 

xmin), (x, xmin), (x, x), (xmin, x)) and ((xmax, xmax), (x, xmax), (x, x), (xmax, x)), respectively, x  X. As 

such, (x, x) is the common vertex of A and B. For example, consider the arbitrary point-cloud 

shown in Figure B2. According to Figure B2, the universe of discourse is as follows, X = [20, 80]. 

Notice the relative positions of the boxes denoted as A and B in Figure B2. The boxes are 

connected at their common vertices. 
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Figure B2. Relative position of A and B in the point-cloud (x(t), x(t + 1)). 

Let PrA(x) and PrB(x) be two subjective probabilities, wherein PrA(x) and PrB(x) represent the 

degrees of chance that the points in the point-cloud are in A and B, respectively. As such, these 

functions are defined by the following mappings: 
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The typical natures of the functions defined in Equations (B1) and (B2) are illustrated in 

Figure B3, using the information of the point-cloud shown in Figure B2. Note that PrA(x) 

increases with the increase in x, and the opposite is true for PrB(x). It is worth mentioning that 

PrA(x) + PrB(x) ≤ 1 for the point-cloud, though for some cases, PrA(x) + PrB(x) = 1 (see Figure B4). 

This means that the expression PrA(x) + PrB(x) does not serve the role of “cumulative probability 

distribution.” A cumulative probability distribution can, however, be formulated by using the 

information of PrA(x) and PrB(x), as shown in Figure B4. 

 

Figure B3. The typical nature of PrA(x) and PrB(x) for unimodal quantity. 
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Figure B4. Nature of PrA(x) + PrB(x) and min(PrA(x), PrB(x)) for unimodal data. 

Consider a mapping that maps x into the minimum of PrA(x) and PrB(x), as follows: 
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In Equation (B3), a = 1 if the point-cloud is a point; otherwise, a < 1. Figure B4 shows the 

nature of g(x) with respect to PrA(x) + PrB(x). The area under g(x) is given by: 
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X
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There is no guarantee that Q = 1. Otherwise, g(x) could have been considered a probability 

distribution of the underlying point-cloud. However, a function F(x) can be defined as follows: 
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Figure B5. Nature of cumulative probability distribution of a point-cloud. 

F(x) can be considered a cumulative probability distribution because max(F(x)) = 1, F(x) ≥ 

F(z) for x ≥ z, F(x)  [0, 1], x, z  X. Figure B5 shows the nature of F(x) derived from g(x) shown in 

Figure B4. The cumulative probability distribution defined in Equation (B5) produces a 

probability distribution Pr(x). Thus, the following formulation holds: 
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Figure B6 shows the probability distribution Pr(x) that corresponds to F(x) as shown in 

Figure B5. The area under the probability distribution Pr(x) is unit and Pr(x) remains in the 

bound of [0, 1]. 

From the induced probability distribution Pr(x), a possibility distribution given by the 

membership function μI(x)) can be defined based on the heuristic rule of probability-possibility 

transformation—the degree of possibility is greater than or equal to the degree of probability. 

The easiest formulation is to normalize Pr(x) by its maximum value, max(Pr(x) | x  X), 

yielding the following formulation: 
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Figure B7 shows the possibility distribution μI(x) derived from the probability distribution 

Pr(x) shown in Figure B6. The shape of the induced probability and possibility distributions are 

identical, as evident from Figures B6 and B7, respectively. Other formulations can be used 

instead of the formulation (B7), if needed. 

 

Figure B6. The nature of the probability distribution of a unimodal point-cloud. 
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Figure B7. The nature of the possibility distribution of a unimodal point-cloud. 

However, it is observed that when the point-cloud resembles the point-cloud of a bimodal 

quantity, the induced possibility distribution resembles a trapezoidal fuzzy number. In addition, 

when the point-cloud is a point, the induced possibility distribution becomes a fuzzy singleton. 

Moreover, when the point-cloud resembles the point-cloud of unimodal data, the induced 

probability/possibility distribution resembles a triangular fuzzy number. To define the 

membership function of an induced fuzzy number in the form of a triangular fuzzy number, the 

following formulation can be used. 

Let u, v, and w be three points in ascending order in the universe of discourse X, u ≤ v ≤ w  X. 

Let the interval [u, w] be the support of a triangular fuzzy number and the point v be the core. The 

following procedure can be used to determine the values of u, v, and w from the induced fuzzy 

number μI(x) (Equation (B7)): 
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As defined in (B8), u is the point after which the membership value μI(x) is greater than zero, 

v is the point corresponding to the maximum membership value max(μI(x)), and w is the point 

from/beyond which the membership value μI(x) again becomes/remains zero. Thus, the 

membership function of the induced triangular fuzzy number denoted as μT(x) is as follows: 
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