Mathematical formulation of features

Since Tr creates a monotonic trend for a given period, its simplest form is as follows:

$$
\begin{equation*}
\operatorname{Tr}(i)=a(i)+b(i) \cdot i \tag{1}
\end{equation*}
$$

In (1), $a(i), b(i) \in \mathfrak{R}$ are two constants, and $i=0,1, \ldots$. These constants remain the same for a given period and may vary in a systematic manner.

Since $C y$ creates a cyclic behavior, its simplest form is as follows:
$C y(i)=c(i) \sin \left(\frac{i}{d(i)}\right)$

In (2), $c(i), d(i) \in \mathfrak{R}$ are two constants. In particular, $c(i)$ is the amplitude constant and $d(i)$ is the frequency constant. These constants can be varied randomly with the iterations $i=0,1, \ldots$, if needed.

Since Ir contributes an amount of noise to the simulated signal, its simplest form is as follows:
$\operatorname{Ir}(i)=r n(i)$

In (3), $r n(i) \in \mathfrak{R}$ is a normally distributed random variable with mean μ and standard deviation σ. Alternatively, one can use a pure random number for adding an amount of noise to a signal.

Since $B r$ introduces a sudden shift in the signal, its mathematical setting is somewhat complex, requiring at least six parameters, namely, position $\left(P_{B}\right)$, likelihood $\left(L_{B}\right)$, span
of ascending shift (p), span of descending shift (q), magnitude of ascending shift $\left(B_{A}\right)$, and magnitude of descending shift $\left(B_{D}\right)$. As such, the following formulation holds:
$B r(i)=f\left(P_{B}, L_{B}, p, q, B_{A}, B_{D}\right)$

The nature of the function $f($.) defined in (4) depends on the given signal. For the cases shown in the concept map, the following algorithm can be used to create $\operatorname{Br}(i)$. Here, r_{i} is a random number in the interval $[0,1], N\left(\mu_{(.)}, \sigma_{(.)}\right)$is a normally distributed variable where $\mu_{(.)}$and $\sigma_{(.)}$are the mean and standard deviation, respectively.

1 :	$L_{B} \leftarrow[0,1]$
2 :	$p, q, n_{1}, n_{2}, n \in \aleph, n_{1}, n_{2}<n$
3:	$P_{B} \leftarrow\left[n_{1}, n_{2}\right]$
4 :	For $i=0, \ldots, n$
5:	$\operatorname{Br}(i)=0, r_{i} \leftarrow[0,1]$
6 :	If $\left(i=P_{B}\right)$ and $\left(r_{i}<L_{B}\right)$
7:	For $k=0, \ldots, p-1$
8 :	$j=i+k, \mu_{j}<\mu_{j+1}$
9:	$B r(i)=\operatorname{Br}(j) \leftarrow N\left(\mu_{j}, \sigma_{j}\right)$
10:	End For
11:	For $l=0, \ldots, q$
12:	$m=i+p+l, \mu_{m}>\mu_{m+1}$
13:	$\operatorname{Br}(i)=\operatorname{Br}(m) \leftarrow N\left(\mu_{m}, \sigma_{m}\right)$
14:	End For
15:	End For

Therefore, adding $\operatorname{Tr}(i), C y(i), \operatorname{Ir}(i)$, and $\operatorname{Br}(i)$ creates the simulated signal $S x(P, C)$. As a result, the following relationship holds.

$$
\begin{equation*}
S x_{i}(P, C)=\operatorname{Tr}(i)+C y(i)+\operatorname{Ir}(i)+B r(i) \tag{5}
\end{equation*}
$$

Ask Sharif if you have any questions (ammsharifullah@gmail.com)

