<u>Anti-inflammatory analgesic</u> <u>drugs</u>

PL331 Spring 2009 Pharmacology for Dentistry Karen Snapp <u>krs@uic.edu</u>

Assigned reading:

Pharmacology and Therapeutics for Dentistry, 5th edition, Yagiela et al

Chapter 21: pages 331-364

Three phases to inflammation

- 1. Acute inflammation autocoids, innate immune responses
- 2. Immune response (subacute inflammation) adaptive immune response induction and effector phases
- 3. Chronic inflammation

<u>Autocoids mediate initial response to</u> <u>tissue injury</u>

<u>Serotonin</u> :	↑ vascular permeability, some effect on vasodilation
<u>Histamine</u> :	↑ vasodilation and vascular permeability
<u>Bradykinin</u> :	\uparrow vasodilation, vascular permeability and pain
Prostaglandins: ↑ vasodilation; ↑ bloodflow; ↑redness, edema and heat; ↑vascular permeability; ↑ ↑ ↑ chemotaxis and ↑ migration of WBC; ↑ ↑ pain Leukotrienes: ↑ vascular permeability and chemotaxis	

Immune System

Innate Immunity

Rapid kinetics Nonspecific response Baseline response

Mediated by phagocytes, physical and chemical barriers, blood proteins

Adaptive Immunity

Slower kinetics Specific response Increase response with repeat exposure Mediated by lymphocytes and their products (B and T cells)

Humoral and Cell-mediated Adaptive Immune Responses

- 1) Humoral: mediated by B-cell secreted Abs
 - Extracellular microbes and their toxins
 - Specific effector functions (promote phagocytosis or granule release)
- 2) <u>Cell-mediated</u>: mediated by T-cells
 - Intracellular microbes (inaccessible to Abs) including viruses
 - Destruction of intracellular microbe or lysis of infected cells

III. Chronic inflammation

- Vascular system (flow and permeability changes)
- Migration of blood cells (infiltrate of lymphocytes & monocytes)
- Chemical mediators (chemokines, cytokines, Igs, coagulation
- Adaptive immune response
- Time course is weeks to years
- Tissue proliferation and destruction

Clinical features of inflammation

- Tumor (edema/swelling)
- Rubor (redness)
- Calor (heat/fever)
- Dolor (pain)
- Loss of function

These features are due to an inflammatory response and the products of a number of cell types including activated mast cells, leukocytes, macrophages, eosinophils, endothelial cells, platelets, et al.

Inflammatory Mediators (con't)

- 7. Thromboxanes: (platelets aggregation & vasoconstriction
- Histamine: IgE mediated or complement [C3a and C5a] mediated release from mast cells and basophils, vasodilator, û permeability of capillaries
- 9. Serotonin: vasoconstrictor released by mast cells
- 10. Angiogenic factors: VEGF, FGF
- 11. Platelet activating factor: (from platelets, EC, macrophages & mast cells; vasodilator, stimulates prostaglandin syn.)
- 12. Nitric oxide: (NO) released from EC and causes smooth muscles to relax and \hat{v} vasodilation and PGs syn.
- 13. Pathogen produced: (bacterial LPS, OMP, fMLP)

<u>Nonsteroidal anti-inflammatory</u> <u>drugs (NSAIDS)</u>

• One of the most widely used therapeutic agents (Rx and non-Rx forms)

• Inhibit arachidonate cyclooxygenase and thus inhibit production of prostaglandins (PG) and thromboxanes (TX)

- 3 types of cyclooxygenase enzymes: COX-1, COX-2 & COX-3
 COX-1: wide spread constitutive enzyme and important in tissue homeostasis
 - + COX-2: induced in inflammatory cells by IL-1 and TNF- α
 - COX-3: a splice variant of COX-1 (also referred to as COX-1b or-1v)
- NSAIDS generally inhibit both isoenzymes, thus :
 - COX-1 inhibition: GI distress
 - COX-2 inhibition: anti-inflammatory effect
- Goal is to develop NSAIDS with a selective action on COX-2

Role of prostanoids in inflammation

- PGE₂ & PGI₂ released by EC and inflammatory cells; PGD₂ released by mast cells; monocytes and macrophages release PGE₂ and TXA₂
- Vasodilation, $\mathbf{\hat{1}}$ blood flow and redness
- Synergize with histamine and bradykinin to \hat{U} vascular permeability, fever and pain
- PGE₂ are implicated in the production of fever with high concentrations in the CNS fluid

3 main pharmacologic effects of NSAIDS

• Antipyretic (lowering of an elevated temperature)

- Inhibition of PG production in hypothalamus (contains center for normal body temperature regulation) and "reset" temperature
- During inflam. rx, see ûIL-1 ⇒ ûPGE ⇒ ûtemp.
- COX-2: induced by IL-1 in EC and PGE
- Analgesic effect (reduction of pain assoc. with inflammatory rx.)
 - \mathbb{Q} PGs that sensitize receptors to inflam. mediators
 - Work in combination with opioids and can ${\bf J}$ required opioid dose
 - Reduce vasodilator effect of PGs on cerebral vasculature, thus pain associated with headache
- Anti-inflammatory (modification of the reaction)
 - Due to action of COX-2 (NSAIDS & PGs and TX syn in inflam. cells)
 - $\mathbf{\Phi}$ vasodilation, cell adhesion and migration, stablizes lysosomes
 - ${\mathbb Q}$ vascular permeability and thus ${\mathbb Q}$ edema

NSAIDS: Chemistry and Pharmacokinetics

- Weak organic acids that are well absorbed
- Metabolized by Phase I and Phase II mechanisms or by Phase II alone
- Utilize CYP3A or CYP2C family of P450 enzymes in the liver
- Final renal excretion but also biliary excretion and reabsorption (excreted unchanged or as H₂O soluble metabolites)
- Protein bound, usually to albumin (drug interactions?)
- All can be found in synovial fluid after repeated dosing

NSAIDS: Pharmacodynamics

- • PGs biosynthesis
- Can also & chemotaxis, & IL-1 production,
 Production of free radicals & superoxide, and disrupt calcium mediated intracellular events
- Most inhibit both COX-1 and COX-2 pathways but selective COX-2 inhibitors are available
- Some inhibit platelet cyclooxygenase
- Some inhibit lipoxygenase or leukotriene synthesis
- I release of mediators from granulocytes, mast cells, basophils, and some T-cells
- Can cause gastric irritation, nephrotoxicity and hepatotoxicity

Aspirin (acetylsalicylic acid; ASA)

- <u>Antipyretic or analgesic dose</u>: 650-1000 mg every 4 hours for adults and 50-75 mg/kg/d in divided doses for children
- <u>Anti-inflammatory dose</u>: 3.2-5 gm/day for adults and 50-75 mg/kg/d for children
- Due to the long t_{1/2} of the active metabolite (salicylates), frequent doses are not required when daily dose is > 4 gm. Normally TID with meals.

Clinical uses

- Often used to ${\mathbb Q}$ mild to moderate pain
- Used in combo with other mild analgesics
- Combined with opioids for CA pain, synergistic enhancement of analgesia
- High doses used in TX of rheumatoid arthritis, rheumatic fever and other joint disorders
- Low dose aspirin is effective in prevention of transient ischemic attacks, unstable angina, coronary artery thrombosis with MI, and thrombosis after coronary artery bypass grafting
- Long term, low dose and \mathbb{Q} incidence of colon CA

Contraindications

- Patients at risk for bleeding disorders (due to anti-platelet effect)
- Patients on anticoagulant therapy
- Drug interactions due to NSAIDS ability to displace other drugs from plasma albumin
- · Adverse effect on GI tract (multiple sources)
- Can block the effect of several antihypertensive drugs including diuretics, ACE inhibitors and β -Adrenoceptor blockers)
- Low dose aspirin reduces urate excretion so don't use in gout

COX-2 selective inhibitors (con't)

•<u>Rofecoxib (Vioxx)</u>: withdrawn from the market in 2004 due to concerned about $\hat{\mathbf{U}}$ risk of stroke and heart attack

•Valdecoxib (Bextra): use in Tx of osteo- and rheumatoid arthritis

•Rx only, dose is 10-30 mg daily, peak plasma levels in ~3 hr.
•Hepatic metabolism and excreted via the urine

•<u>Meloxicam (Mobic)</u>: use for relief of signs and symptoms associated with osteoarthritis

•Rx only, dose is 15 mg daily

·Max. plasma levels in 4-5 hrs, $T_{\rm 1/2}$ is 15-20 hrs, excretion of metabolites in both feces and urine

