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Abstract

The use of developable surfaces in ship design is of engineering importance because they can be easily manufactured without stretching or
tearing, or without the use of heat treatment. In some cases, a ship hull can be entirely designed with the use of developable surfaces. In this paper,
a method to create a quasi-developable B-spline surface between two limit curves is presented. The centreline, chines and sheer lines of a vessel
are modelled as B-spline curves. Between each pair of these boundary curves or directrix lines, the generator lines or rulings are created and a
quasi-developable B-spline surface containing the rulings is defined. A procedure based on multiconic development is used to modify the directrix
lines in case the rulings intersect inside the boundary curves, avoiding non-developable portions of the surface. B-spline curves and surfaces are
widely used today in practically all the design and naval architecture computer programs. Some examples of ship hulls entirely created with
developable surfaces are presented.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A surface is called a ruled surface if it contains a one-
parameter family of straight lines known as generators, or
rulings of the ruled surface. In ship design, it is interesting
to study the case of ruled surfaces defined by the continuous
motion of a straight line between two boundary curves
(e.g. centreline profile, chine and sheer line of a hard chine craft
according to Fig. 1). A developable surface is a case of ruled
surface defined by nonintersecting generators with the same
tangent plane at all points of the same generator.

This developable surface will have the property that by
successive small rotations around each of the rulings, the
surface can be laid flat or developed onto a plane without
stretching or tearing. Conversely, a sheet material (e.g. plywood
or aluminium) can be shaped into a developable surface with
only simple unidirectional bending along the generating lines.
These surfaces are also known as singly curved surfaces (Fig. 2,
left), since one of their principal curvatures is zero, and
therefore, the Gaussian curvature that is the product of both
curvatures of the surface is zero.
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Doubly-curved surfaces (Fig. 2, right) in hull plating should
be avoided, although this is not always possible. A doubly-
curved plate will usually require heat treatment and increased
work input to achieve its required shape. Single-curvature
plates also lead to less scrap. In any case, curvatures of plates
should be kept small enough to avoid castings as these make
the structural detail three to four times more expensive. The
use of single-curvature plates improves welding productivity
by facilitating the use of automatic welding machines. Both
frame/plate and plate/plate connections are easier to weld than
in curved contours.

Apart from the classical developable surfaces, cones and
cylinders, the generic case for developable surfaces is a tangent
surface of a space curve. Any developable surface is the
envelope of a one-parametric family of planes. These planes
will be tangent along a line contained in the surface and these
lines are the generators or rulings.

In this paper, a method to generate quasi-developable
surfaces with B-spline surfaces is presented and applied to ship
design. The approximation of obtaining the rulings between a
pair of directrices is used and these two curves will be modelled
with B-splines. This is detailed in Sections 4 and 5. The way
to avoid non-developable areas is made with the substitution
of the regression area (if present) with a multi-conic technique
that will ensure a developable surface replacing the regression
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Fig. 1. Boundary curves or directrices of a ship hull.

Fig. 2. Single and double curvature.
area as explained in Section 6. Once the rulings are obtained, a
B-spline surface that will contain them is created in Section 7.
By repeating the procedure between the different 3D lines of
the ship (Fig. 1), these kinds of chine hulls can be entirely
modelled with the use of developable B-spline surfaces as will
be presented in the examples. The presented method cannot
create exact developable surfaces with zero Gaussian curvature,
but quasi-developable surfaces are used in normal shipyard
practice as explained in Section 8. Originality of this work is
described in the next section.

2. Background

Developable surfaces are a research field in Geometric
Design and several authors have produced interesting ideas
for marine design. Reference [1] defines a developable Bézier
surface in terms of two Bézier curves (directrix lines or
directrices) and rulings between pairs of points from each
curve. Both directrices are restricted to parallel planes, making
the tangent vectors of each ruling parallel. An algorithm for
producing general Bézier developable patches is shown in [2].
This algorithm, based on affine applications of the cells of the
control net of the patch, is further developed in [3] by use of
degree elevation. Reference [4] extended the procedure of [1]
using several Bézier developable surfaces strung together by
joining them along their end rulings in C2 continuity (second
derivatives). Properties of developable Bézier patches from two
boundary curves are also studied in [5]. Reference [6] obtained
conditions for the control nets and weights of a NURBS
surface in order to be developable, without the technique of
obtaining the rulings between two directrices, which leads
to a complicated nonlinear system of conditions that is hard
to use for the average designer. Reference [7] used a new
representation for developable surfaces in terms of plane
geometry using the duality between points and tangent planes in
3D projective space. They interpret the developable surface as
the set of its tangent planes represented in the dual form. These
techniques are also used in [8] for approximating developable
surfaces.

In the marine field, [9,10] applied the design of developable
surfaces that rest on two directrices (chines, centreline or sheer
line) of important application in small craft design. They used
the same approximation as previously mentioned in [1], that is
the search of ruling lines between a pair of curves. In fact, they
define the surface by their rulings and they used Theilheimer
splines to represent the directrices.

Reference [11] used B-spline surfaces, but they started from
one directrix curve and a pair of rulings. The second directrix
is created between the end points of the rulings assuring
developable surface with the use of certain constraints.

From the design point of view, it is more interesting to work
with the classical two directrices since the kind of ships that
one can design with developable surfaces (hard chine crafts)
are designed this way and their hydrodynamic and stability
properties are a function of the directrices (chines, centreline).
The problem arises when parts of the surface where the rulings
intersect each other inside the surface (regression area) are not
developable, which can be solved with a good design of chine
or sheer lines, or with latter modifications of these lines, as will
be seen.

Reference [12] used the same design principles as [11]
with the use of a normal directrix to the surface and Catmull-
Rom and Beta-splines to model the curves. Reference [13]
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Fig. 3. A ruling of a developable surface.
uses conical and cylindrical surfaces in shipyard applications.
Finally, a review of the different techniques for constructing
developable surfaces is made in [14].

The originality of this work is the use of B-spline properties
for the search technique of the rulings based on a minimum
warp angle. The directrices do not have to present any special
features. Extension in the ends of the directrices is also possible
with this method and some problems to define the limits of
the developable surface can be solved. The method is fast and
easy enough to be used in a shipyard technical office and it is
validated with two small prototypes presented in Section 9.

3. Finding a developable surface

In our case we will search for the different tangent planes,
T, to the surface that will also be tangent to the directrix lines
s1 and s2 (see Fig. 3). These planes will be tangent along a line
r contained in the surface and these lines are the generators or
rulings. As a consequence, the normal vectors n1 and n2 at the
endpoints of a ruling will be parallel.

The conditions that the vector of a ruling r must satisfy
can be described vectorially and can be expressed from the
definition of the cross-product:

n1 = r × t1

n2 = r × t2.
(1)

If n1 and n2 are parallel, r will be a ruling of the surface and
this is satisfied when:

n1 × n2 = 0. (2)

The module or length of the vector in Eq. (2) can be written
as |n1 × n2| = |n1| · |n2| · sin(8) and working with unitary
vectors, |n1 × n2| = sin(8), where 8 is called the warp angle.
This angle has a physical significance that is of interest. It is the
angle that the tangent plane must warp in order to be tangent
to both directrix lines. In shipyard practice, small warp angles
are permitted, since this is a function of the material and of its
thickness as will be explained in Section 8.
4. Working with B-spline curves and nomenclature

As previously mentioned, the directrices s1 and s2 will be
modelled as B-splines. Therefore the first step is to model the
chines, centre line and sheer lines as B-splines. A B-spline
curve of degree n with N + 1 control points is a parametric
curve in u with the general form of Eq. (3):

s(u) =

N∑
i=0

Vi · Bi
n(u) = (X (u), Y (u), Z(u))

=

N∑
i=0

(
X i · Bn

i (u), Y i ·Bn
i (u), Z i ·Bn

i (u)
)

(3)

where Vi = (X i , Yi , Zi ) (i = 0, . . . , N ) are the control points
of the B-spline and Bn

i (u) are basis functions that depend of a
list of knots {u−1, . . . , uN+n} with u j 6 u j+1. In this paper the
uniform parametrization is used and cubic B-splines (n = 3)
are considered.

The derivatives s′(u) of a B-spline s(u), at any value of the
parameter u can be obtained in a recursively way according to
Eq. (4)

[Bn
j (u)]′ = n ·

[
Bn−1

j−1 (u)

u j+n−1 − u j−1
−

Bn−1
j (u)

u j+n − u j

]

s′(u) =

N∑
i=0

Vi · [Bn
i (u)]

′

=

N∑
i=0

(
X i · [Bn

i (u)]′, Yi · [Bn
i (u)]′, Zi · [Bn

i (u)]′
)
.

(4)

In the examples of this work, the authors have used [16] to
approximate the different points of the directrices with cubic
B-splines s1(u) and s2(u).

The designer should use a minimum number of control
points to model the directrices, in order to obtain faired curves.
Nevertheless, numerical fairing algorithms such as [17] or [18]
may be applied. These methods for spline curves are usually
grounded on knot removal procedures and can alter the form of
the splines, reducing precision in the approximation of the data
points.
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Fig. 4. Searching for the rulings.
If the directrices are fair, the locus of rulings defining
the developable surface between them will also be fair and
continuous, since the rulings reflect the character of the curves
they span. In the case of modelling with developable surfaces,
the problem of fitting a fair surface is reduced to find a fair
representation for the directrices.

5. Searching for the rulings

Although the expression for a ruling is simple in terms of
vectors, it leads to a very complex and awkward expression
when reduced to a function of the parameters u1 and u2
belonging to the directrices s1(u1) and s2(u2) modelled as
parametric B-splines [6]. Multiple roots can also be possible
depending on the form of the directrices and the range of
variation of the parameters. A numerical approach has been
chosen.

For a fixed value of the parameter u1 on the directrix s1,
which will be one of the ends of the ruling that we search,
the corresponding point coordinates and tangent value can
be calculated with Eqs. (3) and (4). Different values of the
parameter u2 on the second directrix s2 are obtained with a step
size h (Fig. 4). For different values of u2 along s2, generic i
points are obtained and its tangent t2(i) on s2 can be computed
using Eqs. (3) and (4), the vector r(i) is easily obtained and
with this vector the value of n2(i) can be calculated with Eq.
(1). A schematic flowchart is depicted in Table 1.

The values for u2 lie inside the interval [u−1, . . . , uN+n] that
is the list of knots that has been used to construct the B-spline
basis and this is normally [0,1] for the sake of simplicity but
it is not relevant for the calculations. When the first end of the
ruling, u1 lies near one of the ends of the first directrix, it is
possible that no solutions are found for u2 inside [0,1] and the
search has to be extended to a bigger interval, i.e. [−0.1,1.1].
B-splines are made of pieces of polynomials, and the extension
of the interval outside the list of knots means an extrapolation
using the first piece of the B-spline for values in [−0.1,0] and
the last piece for values [1,1.1]. The limit values −0.1 and 1.1
Table 1
Schematic algorithm of the method

- Initial search of a ruling
First calculate one on the ends of the ruling Q = s1(u1) in s1 and compute

t1
For u = u1 to uN+n

i = i + 1
u2(i) = u
Calculate P = s2(u)

Calculate r(i) = PQ
Calculate t2(i) with Eq. (4)
Calculate n1(i) and n2(i) Eq. (1)
Calculate the warp angle Φ(i)

Next u
- Local search

A minimum value of the warp angle is detected at any u2(i)? It is bellow
the tolerance for the material? Then use a local search strategy repeating the
steps of the initial search but enclose u ∈ [u2(i − 1), u2(i + 1)] until the warp
angle is below a tolerance or is low enough for the construction point of view.
The local search can be made with Newton method, decreasing step size h or
other numerical method.

- Repeat the search for different values of u1 along s1 to obtain different
rulings. Then a lofting surface that contains the rulings can be constructed
according to Section 7

- Consider the searching limits to avoid multiple solutions.
- Detect crossing between rulings that will produce an area of regression,

which can be solved following Section 6 or redesigning the shape of the
directrices.

- Study the searching limits when calculating rulings at the end points of the
directrices.

- If a minimum value for the warp angle cannot be found below the material
tolerance, changes in the design should be made.

work well for the different examples in which the algorithm has
been tested.

The search will stop for the i th value of u2 that makes
the normal vector parallel, or the cross-product equal to zero
according to Eq. (2). As u2 moves along the second directrix
s2(u), an example of the variation of |n1 × n2| = sin(8) can
be seen in Fig. 5. When sin(8) presents a minimum value, a
local search begins by reducing the step size h and a new set of
u2(i) values is obtained.
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Fig. 5. Variation of |n1 × n2|.

Fig. 6. More than one possible solution.

The search strategy continues until the cross product is under
a tolerance, that is a function of the material and its thickness
as will be seen in Section 8. When this value is reached, the
second end of the ruling is found. More than one solution for
the second end of a ruling can be found, depending on the form
of the directrices. These values can be eliminated simply by
limiting the range of variation of u2 to an interval where the
right solutions are placed. An example of the trunk of a cone
is shown in Fig. 6. A point on one lower directrix of this figure
can have more than one correspondent solution in the upper
one, with a parallel normal vector. So, the ruling at the left of
the figure is the correct one and limiting the u2 search to this
area will avoid wrong solutions.

By selecting different u1 values along the first directrix and
repeating the searching strategy that has been described for the
second end of the rulings, the rulings of the developable surface
that rests on the two directrices can be founded. An example is
shown in Fig. 7. The control points of the B-splines can be seen
in this figure, 5 points in this case. As mentioned, when u1 is
selected near one of the ends of the directrix, u2 may lay out
of the limits of the list of knots, and the second end of some
rulings can be placed in the extension of the second directrix.
Once the surface is defined, it can be trimmed away.

It is important to note that the rulings can be also studied as
B-splines curves, with degree n = 1 and two control points,
N = 1, placed at the ends of the segments. This will facilitate
the creation of a lofting B-spline surface that contains the
rulings, as will be explained in Section 7. The correct definition
of the rulings is important in shipyard practice because they
are used to form the surface. Some devices can be created in
practice, such as the “ruling jig” from reference [19] to conform
the surface from a flat plate where the rulings and developed
directrices have been marked, Fig. 8.

6. The area of regression

Given two directrices s1 and s2 the possibility of
constructing a developable surface containing both curves is
the first step. Many ruled surfaces containing both curves may
exist, but no developable surface may be possible. No simple
theorem is available to provide an easy test. In design practice,
if in each projection of s1 and s2 in the profile and plan views,
their curvatures have constantly the same sign and pronounced
curvature is avoided in these curves, a developable surface will
enclose them.

If the rulings are obtained according to Section 5, and
none of the rulings intersect between s1 and s2, then the ruled
surface defined by these generators and bounded by s1 and s2
is developable. If some rulings overlap between s1 and s2 as in
Fig. 9 left, then the edge of regression of the ruled surface has
crossed one of the directrix curves and the surface is not locally
developable in this area.

If these zones are present, they can be converted into
developable areas with the use of a multiconic development,
that will modify one of the directrix curves, s2, between
two rulings L∗

1 and L∗

R (Fig. 9 left). The new area will be
constructed by several rulings belonging to different conic
surfaces (developable) that lean on the directrix that is not
modified. This technique is a well known procedure of
Descriptive Geometry, and the presented algorithm applies the
B-splines properties.

With the use of the u parametric B-splines, the area of
regression is limited in one of the directrices inside the interval
[u11, u1R] and in the second directrix by [u21, u2R]. So, L∗

1 :

P1Q1 and L∗

R : PRQR are the limit rulings that set the part
of the surface where some rulings cross others. By using the
Fig. 7. Rulings of a developable surface.
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Fig. 8. Ruling jig, from reference [19].

Fig. 9. Area of regression.
search technique described in Section 5, the parameter values
that set the ends of a ruling have to be greater than the values
of the previous ruling line. If not, the ruling will intersect the
previous one and this part of the surface will be an area of the
regression.

The multiconic development starts subdividing in equal R
parts the arcs limited by [P1, PR] and [Q1, QR]. With the use
of B-splines, the length of an arc between u = a and u = b can
be obtained with the use of Eq. (5)

l =

∫ b

a

√
X ′(u)2

+Y ′(u)2
+Z ′(u)2du. (5)

The value of the derivatives is calculated with the use of Eq.
(4). L2 is the line that joins the correspondent subdivisions next
to L∗

1 as in Fig. 9 right. Notice that this segment is not a ruling
of the surface.

The multiconic algorithm will find a cone that contains
points P2 and P1, and a generatrix in L∗

1 and will search for
a second generatrix L∗

2 through P2. In this way, the portion
limited by L∗

1, L∗

2 and P1, P2 will be a part of a cone and can be
developed. Repeating the process with L∗

1 and L∗

R , the area of
regression will be substituted by a multiconic developable area,
with rulings that do not intersect inside the surface limits.

In this case, one of the directrix s1 will be maintained, whilst
the other one will be slightly changed to contain new points
placed in the generatrix of the different cones that will be
constructed. This technique is graphically described in Fig. 10,
left. Starting with P2 and P1, Fig. 10 left, a plane α that contains
L2 and perpendicular to the one defined by T , tangent vector
in Q2 defined according to Eq. (4), and L2 is defined. The
intersection of L∗

1 and α is calculated. This point A∗

1 will be
the vertex of the cone that we are looking for. The line that goes
from A∗

1 through P2 is another generatrix and will contain the
new ruling.

A plane β that contains T and j, the unitary vector parallel
to the y axis is constructed. The intersection between β and
the line from A∗

1 through P2 is Q∗

2, the second end of the

ruling that will substitute to Q2. The line L∗

2 : P2Q∗

2 is a valid
ruling. Repeating this process for consecutive segments L i and
L∗

i−1 and obtaining the cone vertex A∗

i and the point Q∗

i as
described, the regression area with crossing rulings is changed
by a multiconic surface that is developable. So, the segment
between Pi and Q∗

i is a valid ruling. The values for A∗

i and Q∗

i
can be calculated with Eq. (9), described in the Appendix (see
also Box I).

From the design point of view, it is better to avoid
pronounced curvature when designing the chine or the sheer
line and maintain their curvatures constantly with same sign, in
order to avoid regression areas. This way, the designer will have
total control of the shape of the directrices, which are modified
if the multiconic algorithm is used. The tolerance for the warp
angle used in the calculation of the rulings has an influence in
the reduction of the regression area, if this region appears. It is
explained in Section 8.



F. Pérez, J.A. Suárez / Computer-Aided Design 39 (2007) 853–862 859
Fig. 10. Multiconic development.
7. Generation of a B-spline surface through the rulings

Up to this point, the rulings have been settled according the
previous sections, but the generalization from curves to surfaces
is not difficult thanks to the properties of B-splines, and a
lofting surface of the rulings can be worked out.

The transition from spline curves to spline surfaces is simple,
by just turning the control polygon into a control net of control
points Wij(X ij, Yij, Z ij), and with the use of the same B-spline
basis for the two parameters u and v together with the use of two
different lists of knots {u−1, . . . , uN+n}, {v−1, . . . , vM+m}.

The lofting process of a set of q B-splines with the same
degree and list of knots can be formulated as: “find a B-spline
surface S with degree n × m and (N + 1) × (M + 1) control
points and list of knots {u−1, . . . , uN+n} and {v−1, . . . , vM+m}

according to Eq. (6) that interpolates q different B-splines
cd (d = 0, . . . , q − 1) of nth degree with N + 1 control points
and list of knots {u−1, . . . , uN+n}, with the form of Eq. (7)”

S(u, v) =

N∑
i=0

M∑
j=0

Wij · Bn
i (u) · Bm

j (v) (6)

cd(u) =

N∑
i=0

Vid · Bn
i (u) (d = 0, . . . , q − 1). (7)

The interpolation can be written:

S(u, vd) =

N∑
i=0

(
M∑

j=0

Wij · Bm
j (vd)

)
· Bn

i (u)

=

N∑
i=0

Vid · Bn
i (u) = cd(u) (d = 0, . . . , q − 1). (8)
This group of equations has to be solved for a set of values
of the parameter vd (d = 0, . . . , q − 1) that is called the
choice of the parametrization. The most usual methods are the
uniform parametrization, the parametrization by chord length
and the centripetal parametrization, [15]. By identifying equal
coefficients for every row of Eq. (8), i = 0, . . . N , the linear
system of Eq. (9) is obtained.

M∑
j=0

Wij · Bm
j (vd) = Vid (d = 0, . . . , q − 1). (9)

In this particular case Vid are the control points for every
ruling d, the ends of each ruling, a surface of degree 1 × 3
is used with n = 1, N = 1, m = 3 and both lists of knots
are uniform. In order to obtain a unique solution for Eq. (9),
M + 1 = q, that is the number of rulings defined according to
Section 5. The (M + 1) • (N + 1) solutions of Eq. (8) are the
control points Wi j of the lofting surface of Eq. (6) containing
the rulings.

8. Gaussian curvature of the created surfaces

An exact developable surface has zero Gaussian curvature,
which is the product of the greatest curvature and the least one.
This implies that at least one of the two curvatures is zero and so
the surface must contain some straight lines that will be oriented
on the directions of the principal curvature (the rulings).

The Gaussian curvature of a B-spline surface can be checked
to ensure developability, and this tool is available in all the naval
architecture programs that work with NURBS surfaces. The
method that has been presented works with certain tolerances in
the cross product of the normal vectors of a ruling as previously
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Table 2
Parameters of the Example 1

Sheer Chine Centreline

Control Points (0.00, 0.00, 9.00) (1.40, 0.00, 5.30) (1.40, 0.00, 5.30)
(6.86, 7.10, 8.22) (10.5, 7.53, 1.93) (2.26, 0.00, −0.21)
(21.6, 8.93, 6.25) (25.7, 7.85, 1.28) (22.6, 0.00, −0.10)
(36.9, 8.73, 5.86) (40.4, 7.46, 1.27) (36.3, 0.00, −0.10)
(45.0, 7.65, 6.10) (44.1, 7.20, 1.70) (44.1, 0.00, 0.50)

List of knots (0, 0, 0, 0, .5 1, 1, 1, 1) (0, 0, 0, 0, .5 1, 1, 1, 1) (0, 0, 0, 0, .5 1, 1, 1, 1)
mentioned in Section 5 and the Gaussian curvature will be low
but not exactly zero.

The form of the generatrices can make that a ruling with a
warp angle equal to zero cannot be found, so a certain warp
angle may exist in some parts of the quasi-developable surface.
Fortunately, almost any material, metal or otherwise, will have
sufficient plasticity to accommodate slight deformation and a
certain warp angle.

Metal can stand a warp angle in the order of six degrees
or so, [19]. Standard strength analysis methods can be used to
calculate the tensile strength resulting from a given warp, but
a six degree warp generally is approaching the yield of most
aluminium alloys of standard thickness. So from a practical
point of view, if the warp angle for every ruling is below this
limit, the surface can be considered as developable.

Increasing the tolerance for the warp angle reduces the
extension of a possible regression area since the surface is
stretched until a limit to adapt the original directrix lines. But
this will produce internal stresses inside the material that can
produce a failure in the structure, so the tolerance should be
respected and the multiconic algorithm can be used as explained
in Section 6. For the ship examples of the next sections, the
developable surfaces that form the ship hulls were constructed
in hard paper, a simple sheet material, in order to check the
validity of the designed surfaces (Figs. 12 and 14).

9. Examples

In this section, some examples of developable ship hulls
created with the presented method will be shown. These hulls
are defined through their chine or chines, sheer and centre
lines, and different developable surfaces are created using
the mentioned lines as directrices. Once the directrices are
defined with B-splines, the rulings are calculated according
to Section 5. Then, a B-spline surface that rests upon these
rulings can be created according to Section 7. These surfaces
can be easily interchanged with specific naval architecture
programs with the use of a standard file such as an IGES or a
STEP.

9.1. Example 1: Hard chine

This example shows the lines of a hard chine craft. The
chine, sheer and centre line can be found in reference [11] and
are presented in Table 2.

The hull is modelled with two different surfaces, one
between the centreline and the chine, and the second one
Fig. 11. Rulings, control points and rendered view of the hard chine.

between the chine and the sheer line. The rulings of both
surfaces obtained as mentioned in Section 5 can be seen on
Fig. 11, up. Notice that rulings near the ends of the first
directrix have their endings in the extension of the second
one.

Based on these rulings, two lofting surfaces are created
according to Section 7. The control points of both surfaces
calculated with Eq. (8) and some isoparametric curves are
shown in Fig. 11, center. Once the surfaces are created, they
are trimmed away with the centre and transom planes, and the
final hull form is obtained, Fig. 11, down. Once the surfaces
are created, the Gaussian curvature can be calculated. In this
example, the maximum Gaussian curvature obtained is 2 ×

10−6. A small paper prototype is showed in Fig. 12.

9.2. Example 2: UBC fishing vessel

This example shows the lines of a two chine fishing vessel.
The geometry of the chines, sheer and centreline is obtained
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Fig. 12. Paper prototype of the hard chine.

Fig. 13. Rulings, control points and rendered view of the UBC.

from reference [12]. The geometry is more complex than in
the previous example, especially in the bow area, but is a good
example of the type of lines that can be constructed with the
use of developable surfaces. In this case, the hull is constructed
with three developable surfaces constructed with the presented
method between the upper chine and sheer line, the lower and
upper chines, and the centre line and lower chine.

The rulings, the control points of the three surfaces and a
rendered view of the trimmed surfaces can be seen in Fig. 13.
The maximum Gaussian curvature of this example is 1 × 10−5.
A small paper prototype is shown in Fig. 14.

10. Conclusions

Developable surfaces are of practical interest in shipyard
practice. A developable surface will require the minimum strain
energy of flexure.

This paper has presented a method to create quasi-
developable surfaces that can be considered as developable
surfaces in shipyard practice.
Fig. 14. Paper prototype of the UBC fishing vessel.

The rulings are obtained with a searching technique based
on the warp angle, and when regression areas are detected,
they can be avoided with the use of a multiconic algorithm that
will change locally the shape of one of the directrices. If the
multiconic algorithm is applied, the error of the approximation
can be checked by comparing the maximum deviation between
the original and modified directrix.

The creation of a lofting B-spline surface allows the
interchange of the created surface with the most common naval
architecture programs that work with NURBS surfaces to define
the ship hull. This can be made with the use of IGES or STEP
standard data exchange.

Two examples have been presented. The UBC series are real
ships that are constructed with the use of developable surfaces.
The examples are an accurate representation of the kind of ships
that can be constructed entirely with the use of developable
surfaces. Small prototypes in paper, a simple sheet material,
were constructed in order to check the validity of the procedure.

Appendix

Considering the nomenclature of Fig. 9 and dividing the part
of the directrices s1 and s2 inside the area of regression into
R − 1 equal parts, the position of the vertexes A∗

i (X∗

i , Y ∗

i , Z∗

i ),
of the cones generated and the new points Q∗

i (X∗

2i , Y ∗

2i , Z∗

2i )

that substitute to the points Qi(X2i , Y2i , Z2i ), can be calculated
with the following expressions.

The points Q∗

i together with the points Pi(X1i , Y1i , Z1i )

form the ends of the rulings. The derivatives (X ′

2i , Y ′

2i , Z ′

2i ) at
points Qi can be calculated with Eq. (4).

γ1 = X2i −X1i
γ2 = Y2i −Z1i
γ3 = Z2i −Z1i

β1 =
Y ∗

2(i−1) −Y 1(i−1)

X∗

2(i−1) −X1(i−1)

β2 =
Z∗

2(i−1) −Z1(i−1)

X∗

2(i−1) −X1(i−1)

β3 =
X∗

i−1 −X1(i−1)

X∗

2(i−1) −X1(i−1)

α1 = γ 2 ·[γ1 · Y ′

2i −γ 2] +γ 3 ·[γ1 ·Z ′
2i −γ 3]

α2 = γ 3 ·[γ2 · Z ′

2i −γ 3 ·Y ′

2i ] −γ 1 ·[γ1 ·Y ′
2i −γ 2]

α3 = γ 3 ·[γ1 ·Z ′
2i −γ 3] −γ 2 ·[γ2 ·Z ′

2i −γ 3 ·Y ′
2i ]
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X∗

i−1 =
α1 ·X2i −α2 ·Y 1(i−1) +α2 ·X1(i−1) ·β1 +α2 ·Y 2i −α3 ·Z1(i−1) +α3 ·X1(i−1) ·β2 +α3 ·Z2i

α1 +α2 ·β1 +α3 ·β2

Y ∗

i−1 = Y 1(i−1) +β3 ·[Y ∗

2(i−1) −Y i(i−1)]

Z∗

i−1 = Z1(i−1) +β3 ·[Z∗

2(i−1) −Z i(i−1)] i = 2, . . . , R − 1

Box I.
See also Box I

δ1 =
Z1i −Z∗

i−1

X1i −X∗

i−1
δ2 =

X∗

2i −X∗

i−1

X1i −X∗

i−1

X∗

2i =
Z ′

2i ·X2i +Z∗

i−1 −X∗

i−1 ·δ1 −Z2i

Z ′
2i −δ1

Y ∗

2i = Y ∗

i−1 +δ2 ·[Y1i −Y ∗

i−1] (10)

Z∗

2i = Z∗

i−1 +δ2 ·[Z1i −Z∗

i−1]
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