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Abstract

We focus on purchase incidence modelling for a European direct mail company. Response models based on sta-
tistical and neural network techniques are contrasted. The evidence framework of MacKay is used as an example
implementation of Bayesian neural network learning, a method that is fairly robust with respect to problems typically
encountered when implementing neural networks. The automatic relevance determination (ARD) method, an inte-
grated feature of this framework, allows us to assess the relative importance of the inputs. The basic response models
use operationalisations of the traditionally discussed Recency, Frequency and Monetary (RFM) predictor categories.
In a second experiment, the RFM response framework is enriched by the inclusion of other (non-RFM) customer
profiling predictors. We contribute to the literature by providing experimental evidence that: (1) Bayesian neural
networks offer a viable alternative for purchase incidence modelling; (2) a combined use of all three RFM predictor
categories is advocated by the ARD method; (3) the inclusion of non-RFM variables allows to significantly augment the
predictive power of the constructed RFM classifiers; (4) this rise is mainly attributed to the inclusion of customer/
company interaction variables and a variable measuring whether a customer uses the credit facilities of the direct
mailing company. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well established in the literature that cus-
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selection of whom to include in the mailing list
rests on an assessment of the individual’s propen-
sity to buy. The prospects or customers to be
mailed are typically selected following the results
of statistical models including behavioural, de-
mographic and other customer profiling predictors
in order to optimise the prospective buyer response
rate. Commonly used target variables for these
mailing response models are purchase incidence,
purchase amount and interpurchase time. In this
paper, we focus on the purchase incidence, i.e. the
issue whether or not a purchase is made from any
product category offered by the direct mail com-
pany.

Conceptually, the purchase incidence response
modelling issue reduces to the general problem
category of binary classification: repurchase or
not. Among the traditional (statistical) techniques
that have been widely used are logistic regression,
linear and quadratic discriminant analysis models.
However, their pre-determined functional form
and restrictive (often unfounded) model assump-
tions limit their usefulness [4,58]. In this paper, we
use neural networks (NNs) for response modelling.
Their universal approximation property makes
them a very interesting alternative for pattern
recognition purposes. Unfortunately, many prac-
tical problems still remain when implementing
NN, e.g. How to choose the appropriate number of
hidden neurons? What is the impact of the initial
weight choice? How to set the weight decay pa-
rameter? How to avoid the network from fitting
noise in the training data? These issues are often
dealt with in an ad hoc way [3]. Nevertheless, they
are crucial to the success of the NN implementa-
tion. A Bayesian learning paradigm has been
suggested as a way to deal with these problems
during NN training [4,33,34,42]. Here, all prior
assumptions are made explicit and the weights and
hyperparameters are determined by applying Ba-
yes’ theorem to map the prior assumptions into
posterior knowledge after having observed the
training data. In this paper, we use the evidence
framework of MacKay as an example implemen-
tation of Bayesian learning [33-36]. An interesting
additional feature of this framework is the auto-
matic relevance determination (ARD) method
which allows us to assess the relative importance

of the various inputs by adding weight regulari-
sation terms to the objective function. In this pa-
per, it is shown that training NNs using the
evidence framework (with the ARD extension) is
an effective and viable alternative for the response
modelling case at hand when compared to the
three benchmark statistical techniques mentioned
above.

The empirical study consists of two sub-
experiments. Initially, only standard Recency,
Frequency and Monetary (RFM) predictor cat-
egories will underly the purchase incidence model.
This choice is motivated by the fact that most
previous research cites them as being most im-
portant and because they are internally available
at very low cost [1,15,29]. It is shown for this case
that, from a predictive performance perspective,
Bayesian NNs are statistically superior when
compared to logistic regression, linear and qua-
dratic discriminant analysis classifiers. Predictive
performance is quantified by means of the per-
centage correctly classified (PCC) and the area
under the receiver operating characteristic curve
(AUROC). The latter basically illustrates the be-
haviour of a classifier without regard to class
distribution or error cost, so it effectively decou-
ples classification performance from these factors
[20,59,60]. The ARD method is used to shed light
upon the relative importance of all variables op-
erationalising the RFM response model. In a
second experiment, the response model is ex-
tended with other potentially interesting customer
profiling variables. It is illustrated that the
Bayesian NNs still perform significantly better
than the three statistical classifiers. Again, the
relative importance of the inputs is assessed using
the ARD method.

This paper is organised as follows. In Section 2
we provide a concise overview of response mod-
elling issues in the context of direct marketing.
Section 3 discusses the theoretical underpinnings
of NNs for pattern recognition purposes. The
Bayesian evidence framework for classification is
presented in Section 4. Section 5 presents the ARD
extension of the evidence framework. The design
of the study, including data set description, ex-
perimental setup and used performance criteria are
presented in Section 6. Results and discussion of
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the basic and extended RFM experiment are cov-
ered in Sections 7 and 8.

2. Response modelling in direct marketing

For mail-order response modelling, several
alternative problem formulations have been pro-
posed based on the choice of the dependent
variable. The first category is purchase incidence
modelling [9]. In this problem formulation, the
main question is whether a customer will pur-
chase during the next mailing period, i.e. one
tries to predict the purchase incidence within a
fixed time interval (typically half a year). Other
authors have investigated related problems deal-
ing with both the purchase incidence and the
amount of purchase in a joint model [32,64]. A
third alternative perspective for response model-
ling is to model interpurchase time through sur-
vival analysis or (split-)hazard rate models which
model whether a purchase takes place together
with the duration of time until a purchase occurs
[16,63].

This paper focuses on the first type of problem,
i.e. purchase incidence modelling. More specifi-
cally, we consider the issue whether or not a pur-
chase is made from any product category offered
by the direct mail company. This choice is moti-
vated by the fact that the majority of previous
research in the direct marketing literature focuses
on the purchase incidence problem [41,69]. Fur-
thermore, this is exactly the setting that mail-order
companies are typically confronted with. They
have to decide whether or not a specific offering
will be sent to a (potential) customer during a
certain mailing period.

Cullinan is generally credited for identifying the
three sets of variables most often used in response
modelling: (R)ecency, (F)requency and (M)on-
etary [1,15,29]. Since then, the literature has ac-
cumulated so many uses of these three variable
categories, that there is overwhelming evidence
both from academically reviewed studies as well as
from practitioners’ experience that the RFM
variables are an important set of predictors for
modelling mail-order repeat purchasing. However,
the beneficial effect of including other variables

into the response model has also been investigated.
In Table 1, we present a literature overview of the
operationalisations of both the independent and
dependent variable(s) in direct marketing response
modelling studies. It shows that only few studies
include non-RFM variables. Moreover, these
studies typically include only one operationalisa-
tion per variable.

The substantive relevance of response modelling
comes from the fact that an increase in response of
only one percentage point can result in substantial
profit increases, as the following real-life example
of an actual mail-order company illustrates. Sup-
pose that the mail-order company decides to mail
to 75% of its current mailing list of 5 million cus-
tomers, i.e. 3,750,000 mailings are sent out. Sup-
pose that the overall response rate when mailing to
all of their current customers is 10% during a par-
ticular mailing period, i.e. if everyone would be
mailed, 500,000 orders would be placed. Suppose
further that the average contribution per customer
amounts to 100 Euro, which is the typical real-life
situation of a large mail-order company. Table 2
compares the economics of several alternative re-
sponse models. When no model is available, we can
expect to obtain 75% of all potential responses (i.e.
0.75 x 500,000 = 375,000 responses) when 75% of
5 million people are mailed (i.e., 3.75 million
mailings are sent out). The ideal model (at the
specific mailing depth) is able to select the people
from the mailing list in such a way that the 500,000
potential customers all receive a mailing, i.e. even
though 25% of the mailing list is not mailed, not a
single order is lost. Suppose further that the current
response model used by the company, by mailing to
75% of their mailing list, allows to obtain 90% of
the responses, i.e. even though 1,250,000 people on
the list do not receive a mailing, only 10% of the
500,000 potential customers are excluded. This will
result in 450,000 orders, which represents a sub-
stantial improvement over the ‘null model’ situa-
tion. If a better response model can be built, which
achieves 91% of the responses instead of 90%, the
contribution of this change will directly increase
the contribution over the null model from 7.50
million Euro to 8 million Euro, i.e. by 500,000 Euro
(1% of 10% of 5 million customers x 100 Euro
average contribution).
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Given a tendency of rising mailing costs and
increasing competition, we can easily see an in-
creasing importance for response modelling [25].
Improving the targeting of the offers may indeed
counter these two challenges by lowering non-re-
sponse. Moreover, from the perspective of the re-
cipient of the (direct mail) messages, mail-order
companies do not want to overload consumers
with catalogues. The importance of response

Table 1
Literature review of response modelling papers

modelling to the mail-order industry is further il-
lustrated by the fact that the issue of improving
targeting was among the top three concerns with
73.5% of the cataloguers in the sample mentioned
in [19].

In this study, we contribute to the literature by
providing a thorough investigation into: (1) the
suitability of Bayesian neural networks for repeat
purchase modelling; (2) the predictive performance

Reference Independent variable Dependent variable
R F M Length of Other Socio- Binary Binary Binary
relationship behavi- demo- and and
oural graphic amount timing
Berger and X X X X X
Magliozzi [2]
Bitran and X X X X
Mondschein [5]
Bult and X X X X
Wittink [11]
Bult [9] X X X
Bult [8] X X X X
Bult et al. [10] X X X X X X X
Desarbo and X
Ramaswamy [18]
Goniil and Shi [23] X X X
Kaslow [28] X X X X X X X
Levin and Zahavi [32] X X X X X X X
Magliozzi and X X X X
Berger [38]
Magliozzi [37] X X X X
Rao and Steckel [47] X
Thrasher [61] X X X X X
Van den Poel [62] X X X X X X
Van der Scheer [64] X X X
Zahavi and X X X X X
Levin [69]
Table 2
Economics resulting from performance differences among response models
Type of Mailing No. of No. of No. of Average Total Additional
model depth customers mailings responses contribution contribution contribution
(million) sent out (Euro) (million Euro) over ‘No
(million) model’
(million Euro)
Null model 75.00% 5.00 3.75 375,000 100.00 37.50 0.00
Ideal model 75.00% 5.00 3.75 500,000 100.00 50.00 12.50
90% Model 75.00% 5.00 3.75 450,000 100.00 45.00 7.50
91% Model 75.00% 5.00 3.75 455,000 100.00 45.50 8.00
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of alternative operationalisations of RFM
variables and their relative importance; (3) the
issue whether other (non-RFM) variables add
predictive power to the traditional RFM variables.

3. Neural networks for pattern recognition

Neural networks (NNs) have shown to be very
promising supervised learning tools for modelling
complex non-linear relationships [4,50,71]. NNs
are designed to deal with both regression and
classification tasks. This, especially in situations
where one is confronted with a lack of domain
knowledge. As universal approximators, they can
significantly improve the predictive accuracy of an
inference model compared to mappings that are
linear in the input variables [26]. In what follows,
the discussion will be limited to the binary classi-
fication problematic. Typical application areas
include medical applications [39,44,53], business
failure prediction [14,30,55,70] and customer credit
scoring [17,22,45].

NNs are mathematical representations inspired
by the functioning of the human brain. An NN is
typically composed of an input layer, one or more
hidden layers and an output layer, each consisting
of several neurons (layer units). Each neuron
processes its inputs and generates one output value
which is transmitted to the neurons in the subse-
quent layer. In a multi-layer perceptron (MLP), all
neurons and layers are arranged in a feedforward
manner. For a binary classification problem one
commonly opts for an MLP with one hidden layer
and one output unit.

This neural network then performs the follow-
ing non-linear function mapping:

y = fr(mrfi(wix)), (1)

where x € R” and y € R is the MLP produced
output. wy and w, are weight vectors of the hidden
and output layer, respectively. The weight vectors
w; and w, together make up the parameter vector
w, which needs to be estimated (learned) during a
training process. f; and f, are termed transfer
functions and essentially allow the network to
perform complex non-linear function mappings.

/(@)

Output Layer

HiddenLayer
Input Layer

Fig. 1. A multi-layer perceptron with one hidden layer and one
output unit.

An example of an MLP with one hidden layer and
one output unit is presented in Fig. 1.

Given a training data set D = {x™ (") |m =
1,...,N}, where x is an n-dimensional input
vector corresponding to a specific data instance m
that is labelled by a target variable ¢, the weight
vector w of the NN is randomly initialised and
iteratively adjusted so as to minimise an objective
function, typically the sum of squared errors (SSE)

LS m iy
Ep=3 (" —y")2 e

m=1

The backpropagation algorithm originally pro-
posed by Rumelhart et al. [52] is probably the best-
known example of the above mechanics. It
performs the optimisation by using repeated
evaluation of the gradient of Ep and the chain rule
of derivative calculus. Due to the problems of slow
convergence and relative inefficiency of this algo-
rithm, new and improved optimisation methods
(e.g. Levenberg-Marquardt and quasi-Newton)
have been suggested to deal with the latter. For an
overview, see [4].

For a binary classification problematic it is
convenient to use the logistic transfer function

1

1+ exp(—z) (3)
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as transfer function in the output layer (f3), since
its output is limited to a value within the range
[0,1]. This allows the output y" of a neural net-
work to be interpreted as a conditional probability
of the form p(t™ = 1|x") [4]. In that way, the
neural network naturally produces a score per data
instance, which allows the data instances to be
ranked accordingly for scoring purposes (e.g.
customer scoring). It has to be noticed that for
classification purposes the SSE function E, (see
Eq. (2)) is no longer the most appropriate opti-
misation criterion because it was derived from
maximum likelihood on the assumption of
Gaussian distributed target data [4,7,56]. Since the
target attribute is categorical in a classification
context, this assumption is no longer valid. A more
suitable objective function is the cross-entropy
function which is based on the following rationale
[4]. Suppose we have a binary classification prob-
lem for which we construct an NN with a single
output representing the posterior probability
™ = p(t™ = 1|x™). The likelihood of observing
1 € {0, 1} given x is then given by

(™ x™) = () (1= pmy (4)
The likelihood of observing the training data set is
then modelled as

) £ )y 1)
TIO )™ (1 =yt = (5)

m

The cross-entropy error function G maximises this
likelihood by minimising its negative logarithm:

G=— Z {£" (") + (1 — ™) In(1 — y™)}.

(6)

It can easily be verified that this error function
reaches its minimum when ") =" for all
m=1,...,N. Optimisation of G with respect to w
may be carried out by using the optimisation al-
gorithms mentioned in [4].

For decision purposes, the posterior probability
estimates produced by the NN are used to classify
the data instances into the appropriate (prede-
fined) classes. This is done by choosing a threshold
value in the scoring interval [0, 1]. The optimal

choice of this threshold value can be related to the
probabilistic interpretation of the network outputs
as follows. Suppose we have two classes, class 1
(" =1) and class 0 (1" =0). As mentioned
above, the output of the NN represents the esti-
mated probability that a particular data instance m
belongs to class 1 given its input vector x). The
misclassification percentage is then minimised by
assigning an instance x™ to the class ¢ € {0,1}
having the largest posterior probability estimate
p(t™ = c|x™). This simply comes down to
choosing a threshold value of 0.5. A data instance
is assigned to class 1 if its output (posterior)
probability exceeds this threshold and to class 0
otherwise. Notice that this reasoning is contingent
on a situation in which equal misclassification
costs are assigned to false positive and false neg-
ative predictions.

The ultimate goal of NN training, and eventu-
ally of every inference mechanism, is to produce a
model which performs well on new, unseen test
instances. If this is the case, we say that the net-
work generalises well. To do so, we basically have
to avoid the network from fitting the noise or id-
iosyncracies in the training data. This is most often
realised by monitoring the error on a separate
validation set during training of the network.
When the error measure on the latter set starts to
increase, training is stopped, thus effectively pre-
venting the network from fitting the noise in the
training data (early stopping). A superior alter-
native is to add a penalty term (weight regulariser)
to the objective function as follows [4,58]:

F(w) = G+ aEy, (7)

whereby, typically
Ey =23 W (8)
w 2 - i

with i running over all elements of the weight
vector w. This method for improving generalisa-
tion constrains the size of the network weights w
and is referred to as regularisation. When the
weights are kept small, the network response will
be smooth. This decreases the tendency of the
network to fit the noise in the training data.
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The success of NNs with weight regularisation
obviously depends strongly on finding appropriate
values for the weight vector w and the hyperpa-
rameter o. In Section 4, we discuss the evidence
framework of MacKay as our method of choice
for training the NN weight vector w and setting
the hyperparameter o [33-35].

4. The evidence framework

Bayesian learning essentially works by adapting
prior probability distributions into posterior
probability distributions guided by the training
data [4,33-35,42]. Relying on probability distri-
butions stresses the importance of capturing the
inherent uncertainty while learning the true rela-
tionship from a finite data sample. In a Bayesian
context, all implicit assumptions, i.e. prior
knowledge encoded in the form of prior proba-
bility distributions, have to be made explicit and
rules are provided for reasoning consistently given
those assumptions. More specifically, in a Baye-
sian NN learning framework, the weights of the
neural network are considered random variables
and are characterised by a joint probability dis-
tribution. In this section, we restrict our attention
to the evidence framework for Bayesian learning
as introduced by MacKay in [33-35]. Other im-
plementations of Bayesian learning have been
presented in e.g. [12,42,68].

Let p(w|a, H) be the prior probability distribu-
tion over the weight vector w given a neural net-
work model H and the hyperparameter o.
p(w|a, H) expresses our initial beliefs about the
weights w before any data have arrived. This will
typically be a flat (uniform) distribution in the
weight space when all weight values are a priori
equiprobable. When the data D are observed, the
prior distribution of the parameter vector w is
adjusted to a posterior distribution according to
Bayes’ theorem (level-1 inference). This gives

p(DIw, H)p(w|o, H)

pw|Dya, H) =
WID. . H) = = Bl )

©)

In the above expression p(D|w, H) is the likelihood
function, which is the probability of the data oc-

curring given the weights w and the functional
form of the neural network H. The denominator of
the expression in Eq. (9), i.e. p(D|a,H), is the
normalisation factor that guarantees that the
right-hand side of Eq. (9) integrates to one over
the weight space. The latter is often referred to as
the evidence for o. Hence, Eq. (9) can be restated
as

likelihood x prior

posterior = .
evidence

(10)

Obtaining good predictive models is dependent
on the use of the right prior distributions. MacKay
uses Gaussian prior distribution functions in his
operationalisation of Bayesian learning to ap-
proximate the posterior p(w|D, o, H). In e.g. [12,68]
other types of prior distributions have been used.
When assuming a Gaussian prior for the weights w
with zero mean and variance equal to 1/a, the
probability distributions in the numerator of the
right-hand side of Eq. (9) can be written as

p(Dlw,H) = [T (1 —yty' ="

m

— exp(—G), (1)

p(wlo, H) = exp(—aEy)

1
Zy (o)

with Zy (o) = (2n/2)"* and I standing for the
number of weight parameters. By substituting
these probabilities into Eq. (9), we obtain

(1/Zy(a)) exp(—(G + aEw))
evidence

p(w|D,a, H) =

= ZMl(Ot) exp(—F(w)). (12)

The most probable weights wMP can then be cho-
sen so as to maximise the posterior probability
p(w|D, o, H). This is equivalent to minimising the
regularised objective function F(w) =G + aEy,
since Zy, () is independent of the weights w. The
most probable weight values wMP (given the cur-
rent setting of «) are thus found by minimising the
objective function F(w). Standard optimisation
methods may be used to perform this task [4]. This
concludes the first level of Bayesian inference.
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Notice how Eq. (9) assumes that the value for
the hyperparameter o is known, since the proba-
bility distributions were formulated as being con-
tingent on the values of a. The hyperparameter o
may again be optimised by applying Bayes’ theo-
rem, which is typical in an optimisation framework
governed by Bayesian reasoning (level-2 infer-
ence). This yields

p(Dlo, H)p(alH)

ploiD, 1) = P

(13)
Starting from Eq. (13) and assuming a uniform
(non-informative) prior distribution p(a|H), the
most probable «, oMP, is obtained by maximising
the likelihood function p(D|a, H). Notice that this
likelihood function performs the role of the nor-
malising constant in Eq. (9), where it was referred
to as the evidence for . Making use of Eq. (9) and
making the Gaussian prior explicit, we can rewrite
the normalisation factor as

-
_ exp(=G)(1/Zy(x)) exp(—oky)
(1/Z (=) exp(—=F(w))
_ Zy(0)exp(—=G —aEy)  Zy(a)
= Zy W exp(—F W) Zu(2)

(14)

where Zy(x) is known from its definition in
Eq. (11). The only part we need to determine in
order to be able to optimise Eq. (14) is Zy/(a). The
latter may be estimated by demanding that the
right-hand side of Eq. (12) integrates to one over
the weight space and approximating F(w) by a
second-order Taylor series expansion around wM? .
The hyperparameter «M? may then be found by
setting the derivative of the logarithm of Eq. (14)
with respect to « to zero yielding

MP i
o = 2, (W) (15)
where y = | — o Trace(H™M?) " is called the effective
number of parameters in the neural network. For
more mathematical details see MacKay [33-35].
HM? stands for the Hessian matrix of the objective
function F(w) evaluated at wMP. The effective
number of parameters in a trained neural network

is the number of well-determined weights indicating
how many parameters of the NN are effectively
used in reducing the error function F(w). It can
range from 0 to /. The o parameter is randomly
initialised and the network is then trained in the
usual manner by using standard optimisation al-
gorithms [4], with the novelty that training is peri-
odically halted for the weight decay parameter o to
be updated. The latter may be done at each epoch of
the NN training algorithm or after a fixed number
of epochs. Notice that, since no validation set is
required, all data can be used for training purposes.

An aspect of Bayesian learning we have not
mentioned yet is model selection (level-3 infer-
ence). It is possible to choose between network
architectures in a Bayesian way by using the evi-
dence attributed to an architecture H referred to as
p(D|H) in [33-35]. Network models may then be
ranked according to their evidence. However, in
[51] it was empirically shown that for large data
sets, the training error is as good a measure for
model selection as is the evidence. For further
details on Bayesian learning for neural networks
we refer to [4,33-35,42]. In Section 5, we present
another aspect of the evidence framework that
plays an important role in the setup of this paper:
input ranking using the ARD method.

5. Input ranking using automatic relevance deter-
mination (ARD)

Selecting the best subset of a set of n input
variables as predictors for a neural network is a
non-trivial problem. This follows from the fact
that the optimal input subset can only be obtained
when the input space is exhaustively searched.
When n inputs are present, this would imply the
need to evaluate 2” — 1 input subsets. Unfortu-
nately, as n grows this very quickly becomes
computationally infeasible [27]. For that reason,
heuristic search procedures are often preferred. A
multitude of input selection methods have been
proposed in the context of neural networks
[40,48,49,54]. These methods generally rely on the
use of sensitivity heuristics, which try to measure
the impact of input changes on the output of the
trained network. Inputs may then be ranked (soft
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input selection) and/or pruned (hard input selec-
tion) according to their sensitivity values. In this
paper, we focus on input ranking as a means to
assess the relative importance of the various inputs
for the direct marketing case at hand. This is done
by using the ARD method [36,43]. The ARD
model is easily integrated within the evidence
framework outlined in Section 4. It allows to
perform soft input selection by ranking all inputs
according to their relative importance for the
trained network.

The ARD model introduces a weight decay
hyperparameter for each input. For an MLP with
one hidden layer and one output neuron, three
additional weight decay constants are introduced:
one associated with the connections from the input
bias to the hidden neurons, one associated with the
connections from the hidden neurons to the output
neuron and one associated with the connection
from the hidden bias neuron to the output neuron.
This means that n + 3 weight classes, each associ-
ated with one weight decay parameter oy, are
considered when 7 inputs are present. This setup is
illustrated in Fig. 2. All weights of weight class k
are then assumed to be distributed according to a
Gaussian prior with mean 0 and variance ¢} = -
(see Eq. (11)). The evidence framework is there—
upon applied to optimise all n + 3 hyperparame-
ters o by finding their most probable values o}'*.

Output Layer

HiddenLayer
Input Layer

Fig. 2. Overview of the o, hyperparameters introduced by the
ARD method.

The most probable weights wMP are found by
minimising the altered objective function

=G+ wmEpu), (16)
k

where Ey ) = (1/2) >, w?, with i running over all
weights of weight class k. Analogous to the results
obtained in the previous section, one obtains
(level-2 inference)

MP __ Tk
O = Z.(WMP)z ’ (17)

where y, is the number of well-determined pa-
rameters for weight «class k& with 7y, =
Iy — oy Tracek(HMP)_l. Il is the number of pa-
rameters (weights) in weight class k£ and the trace is
taken over those parameters only. All inputs may
eventually be ranked according to their optimised
oy values. The most relevant inputs will have the
lowest o, values, since oy is inversely proportional
to the variance around 0 of the corresponding
Gaussian prior.

One of the main advantages of ARD is that it
allows to include a large number of potentially
relevant input variables in the model without
damaging effects [43]. Furthermore, it is integrated
into the optimisation mechanism and completely
rests upon the inspection of the optimised oy pa-
rameters. Illustrations of ARD for input ranking
can be found in [6,13,36,42,43,67].

6. Design of the study
6.1. Data set

From a major European mail-order company,
we obtained data on past purchase behaviour at
the order-line level, i.e. we know when a customer
purchased what quantity of a particular product at
what price as part of what order. This allowed us,
in close cooperation with domain experts and
guided by the extensive literature (see Section 2),
to derive all the necessary purchase behaviour
variables for a total sample size of 100,000 cus-
tomers. For each customer, these variables were
measured in the period between July 1st 1993 and
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June 30th 1997. The goal is to predict whether an
existing customer will repurchase in the observa-
tion period between July 1st 1997 and December
31st 1997 using the information provided by the
purchase behaviour variables. This problem boils
down to a binary classification problem: Will a
customer (data instance m) repurchase (1™ = 1)
or not (¢™ = 0)? Again notice that the focus is on
customer retention and not on customer acquisi-
tion. Of the 100,000 customers, 55.18% actually
repurchased during the observation period.

6.2. Experimental setup

The experiment consists of two subexperiments.
In Section 7, we start by concentrating on RFM
variables only. Using these variables, we compare
the performance of NN trained using the evidence
framework with that of three benchmark statistical
classification techniques i.e. logistic regression, lin-
ear and quadratic discriminant analysis. We then
discuss the relevance of the RFM variables using the
ARD method presented in Section 5. In an attempt
to further enrich the RFM response model, the
same experiment is repeated with the input of other,
potentially interesting customer profiling predictors
which were handpicked by domain experts.

All performance assessments are computed on
10 bootstrap resamples generated from the original
data set. Each bootstrap consists of 100,000 in-
stances which are divided into a training set (50,000
instances) and a test set (50,000 instances). The
former is used to train the classifier and the latter is
used to estimate its generalisation behaviour. As a
form of preprocessing, the inputs are statistically
normalised to zero mean and unit variance by
subtracting their mean and dividing by the stan-
dard deviation [4]. This is needed in order to be able
to compare the relative importance of the various
inputs by means of the ARD hyperparameters.

All neural network classifiers have one hidden
layer with hyperbolic tangent transfer functions. A
logistic transfer function is used in the output layer.
The architecture of the MLP is determined by
varying the number of hidden units between 2 and
14 in steps of 2. The hidden units have connections
to all input units and also have a bias input. The

single output is connected to all hidden units and
again has a bias input. The number of epochs is set
to 1000. The hyperparameter « is initialised to 0.2.
All neural networks are trained with the quasi-
Newton method to minimise a regularised cross-
entropy error function. The hyperparameter o is
updated every 100 epochs. All trained classifiers are
evaluated by looking at their performance assessed
on the independent test sets of all 10 bootstraps. All
neural network analyses were done using the Net-
lab toolbox for Matlab implemented by Bishop
and Nabney [4]. In the following section we provide
an overview of the performance measures which
were used in this paper.

6.3. Performance criteria for classification

The percentage correctly classified (PCC) cases,
also known as the overall classification accuracy, is
undoubtedly the most commonly used measure of
the performance of a classifier. It simply measures
the proportion of correctly classified cases on a
sample of data D. Formally, it can be described as

1SS o) m
PCC =5 > 04T, (18)

where y(()f'{) is the predicted class for instance m,
is its true class label and o(-,-) stands for the
Kronecker delta function which equals 1 if both
arguments are equal, 0 otherwise.

In a number of cases, the overall classification
accuracy may not be the most appropriate perfor-
mance criterion. It tacitly assumes equal misclas-
sification costs for false positive and false negative
predictions. This assumption is problematic, since
for most real-world problems (e.g. fraud detection,
customer credit scoring) one type of classification
error may be much more expensive than the other.
Another implicit assumption of the use of PCC as
an evaluation metric is that the class distribution
(class priors) among examples is presumed con-
stant over time and relatively balanced [46]. For
example, when confronted with a situation char-
acterised by a very skewed class distribution in
which faulty predictions for the underrepresented
class are very costly, a model evaluated on PCC
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alone may always predict the most common class
and, in terms of PCC, provide a relatively high
performance. Thus, using PCC alone often proves
to be inadequate, since class distributions and
misclassification costs are rarely uniform. How-
ever, taking into account class distributions and
misclassification costs proves to be quite hard, since
in practice they can rarely be specified precisely and
are often subject to change [21]. In spite of the
above, comparisons based on classification accu-
racy often remain useful because they are indicative
of a broader notion of good performance [46].

Descriptive statistics such as the false positives,
false negatives, sensitivity and specificity can pro-
vide more meaningful results. Class-wise decom-
position of the classification of cases yields a
confusion matrix as specified in Table 3. The fol-
lowing performance metrics can readily be distilled
from Table 3:

TP

sensitivity = TP L FN (19)
TN
specificity = FPrTN (20)

The sensitivity (specificity) measures the propor-
tion of positive (negative) examples which are
predicted to be positive (negative). Using the no-
tation of Table 3, we may now formulate the
overall accuracy as follows:

TP+ TN

PCC = . 21
cc TP + FP +TN + FN 1)

Note that sensitivity, specificity and PCC vary
together as the threshold on a classifier’s continu-
ous output is varied between its extremes within
the interval [0, 1]. The receiver operating charac-
teristic curve (ROC) is a 2-dimensional graphical
illustration of the sensitivity (‘true alarms’) on the

Table 3
The confusion matrix for binary classification

Predicted Actual

+ —
+ True positive (TP) False positive (FP)
- False negative True negative
(FN) (TN)

Y-axis versus (1-specificity) (‘false alarms’) on the
X-axis for various values of the classification
threshold. It basically illustrates the behaviour of a
classifier without regard to class distribution or
error cost, so it effectively decouples classification
performance from these factors [20,59,60].

Fig. 3 provides an example of several ROC
curves. Each ROC curve passes through the points
(0,0) and (1,1). The former represents the situa-
tion whereby the classification threshold exceeds
the highest output posterior probability value
(meaning all instances are classified in class 0). In
the latter case, the classification threshold is lower
than the lowest posterior probability value
(meaning all instances are classified in class 1). A
straight line through (0,0) and (1, 1) represents a
classifier with poor discriminative power, since the
sensitivity always equals (1-specificity) for all
possible values of the classification threshold
(curve A). It is to be considered as a benchmark
for the predictive accuracy of other classifiers. The
more the ROC curve approaches the (0, 1) point,
the better the classifier will discriminate (e.g. curve
D dominates curves A, B and C). ROC curves of
different classifiers may however intersect making
a performance comparison less obvious (e.g.
curves B and C). To overcome this problem, one
often calculates the area under the receiver oper-
ating characteristic curve (AUROC). The AU-
ROC provides a simple figure-of-merit for the
performance of the constructed classifier. An in-
tuitive interpretation of the AUROC is that it
provides an estimate of the probability that a
randomly chosen instance of class 1 is correctly
rated (or ranked) higher than a randomly selected
instance of class 0 [24].

In what follows, we consistently multiply AU-
ROC values by a factor of 100 to give a number
that is similar to PCC, with 50 indicating random
and 100 indicating perfect classification.

7. Basic RFM experiment

7.1. Predictors used in the basic RFM experiment

We used two time horizons for all RFM vari-
ables. The Hist horizon refers to the fact that the
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Fig. 3. The receiver operating characteristic curve (ROC).

variable is measured between the period July 1st
1993 until June 30th 1997. The Year horizon refers
to the fact that the variable is measured over the
last year. Including both time horizons allows us
to check the argumentation that more recent data
are much more relevant than historical data. All
RFM variables are modelled both with and with-
out the occurrence of returned merchandise, indi-
cated by R and N in the variable name,
respectively. The former is operationalised by in-
cluding the counts of returned merchandise in the
variable values, whereas in the latter case these
counts are omitted. Taking into account both time
horizons (Year versus Hist) and inclusion versus
exclusion of returned items (R versus N), we arrive
at a 2 x 2 design in which each RFM variable is
operationalised in four ways.

For the Recency variable, many operationali-
sations have already been suggested. In this paper,
we define the Recency variable as the number of
days since the last purchase within a specific time
window (Hist versus Year) and including or ex-
cluding returned merchandise (R versus N) [1].
Recency has been found to be inversely related to
the probability of the next purchase, i.e. the longer
the time delay since the last purchase the lower the

probability of a next purchase within the specific
period [15].

In the context of direct mail, it has generally
been observed that multi-buyers (buyers who al-
ready purchased several times) are more likely to
repurchase than buyers who only purchased once
[1,57]. Although no detailed results are reported
because of the proprietary nature of most studies,
the Frequency variable is generally considered to
be the most important of the RFM variables [41].
Bauer [1] suggests to operationalise the Frequency
variable as the number of purchases divided by the
time on the customer list since the first purchase.
We choose to operationalise the Frequency vari-
able as the number of purchases made in a certain
time period (Hist versus Year) while including or
excluding returned merchandise (R versus N).

In the direct marketing literature, the general
convention is that the more money a person has
spent with a company, the higher his/her likeli-
hood of purchasing the next offering [31]. Nash
[41] suggests to operationalise monetary value as
the highest transaction sale or as the average order
size. Levin and Zahavi [31] propose to use the
average amount of money per purchase. We model
the Monetary variable as the total accumulated
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monetary amount of spending by a customer
during a certain time period (Hist versus Year)
while including or excluding returned merchandise
(R versus N). Table 4 gives an overview of the
different operationalisations of the RFM variables.

7.2. Results and discussion of the basic RFM
experiment

The upper three rows of Table 5 contain the
results for three benchmark statistical techniques:
logistic regression, linear and quadratic discrimi-
nant analyses. The mean and standard deviation
for the PCC and AUROC performance criteria are
reported for training and test set over all 10 boot-
strap resamples. The logistic regression classifier
yields a mean classification accuracy of 70.3% and
the mean area under the receiver operating char-
acteristic curve amounts to 77.4% on the test set. It
is clearly dominating both the linear and quadratic
discriminant analysis classifiers when looking at the

Table 4
Operationalisations of RFM variables used in the basic RFM
experiment

performance in terms of PCC and AUROC. This is
confirmed by a series of paired student’s #-tests
using a significance level of 0.01. In all cases the
resulting P-values proved to be smaller than 0.01.
Notice the small difference between the test set and
training set results for all statistical classifiers.
Results for the Bayesian NN classifiers are
presented in the second part of Table 5. The per-
formance increases only slightly as the number of
hidden neurons is varied between 2 and 6. From
that point on, adding more hidden neurons seems
to have no extra beneficial effect on both perfor-
mance measures. Again, notice the small differ-
ences between the training and test set
performances. This is a clear indication of the fact
that no significant overfitting on the training set
occurs while learning the NN (hyper)parameters.
This may be attributed to the Bayesian way of
learning the NN parameters, the weight regulari-
sation mechanism, and the fact that both training
and test sample size are rather large. Note that an
NN with two hidden neurons already gives quite
satisfying results. As noted above, we perform
model selection using the training set error. Hence,
we choose an NN with six hidden neurons yielding
a mean PCC of 71.3% and a mean AUROC of

Recency Frequency Monetary 78.6% on the test set. Both the PCC and AUROC
RecHistN FrHistN MonHistN are significantly better for the Bayesian NN than
RecHistR FrHistR MonHistR for the logistic regression classifier. This is con-
RecYearN FrYearN MonYearN firmed by the corresponding paired student’s f-
RecYearR FryearR MonYearR tests. The 1% point difference between the mean
Table 5
Performance assessment of all classifiers for the basic RFM experiment
PCC AUROC
Train Test Train Test
Logistic regression 70.3+£0.1 70.3+£0.2 77.5+0.1 774+£0.2
Linear discriminant analysis 68.9+0.1 68.9+0.2 76.0 +0.1 759+0.2
Quadratic discriminant analysis 63.6+0.4 63.2+0.4 74.4+0.2 743+£0.2
NN 2 hidden neurons 71.2 £0.1 71.2+0.1 78.5+0.1 78.4+0.2
NN 4 hidden neurons 71.3+0.2 71.2+0.1 78.8+0.2 78.5+£0.2
NN 6 hidden neurons 71.4+0.2 71.3+0.2 789+0.2 78.6 £0.2
NN 8 hidden neurons 714+0.2 71.3+£0.2 789+0.2 78.6 £0.2
NN 10 hidden neurons 714+0.2 71.3+0.1 789+0.2 78.6£0.2
NN 12 hidden neurons 71.4+£0.2 71.3+£0.1 789+0.2 78.6 £0.2
NN 14 hidden neurons 71.4+0.2 71.3+0.1 789+0.2 78.6+£0.2
NN ARD six hidden neurons 71.4+0.2 71.2+0.1 78.7+£0.2 78.5+£0.2
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PCC of both classifiers is important from a direct
marketing perspective as discussed in Section 2.
The final part of Table 5 depicts the performance
results of an NN ARD classifier with six hidden
neurons. The ARD method yields a mean PCC of
71.2% and a mean AUROC of 78.5% on the test
set, which is comparable to the NN non-ARD
results reported in the second part of the table.

Fig. 4 reports the error bars representing the
95% confidence intervals for the o, (on a loga-
rithmic scale) of the various inputs over the 10
bootstrap resamples. The o coefficients of the NN
ARD classifiers are also used to obtain a ranking
of the importance of all 12 weight classes corre-
sponding to the RFM inputs. All 12 «; coefficients
are mapped into a ranking from 1 to 12 for each of
the 10 runs of the ARD experiment. The weight
class corresponding to the lowest o, is ranked first
because it is considered most important according
to the ARD semantics. Insight into the rankings
produced by all 10 runs of the experiment is then
obtained in the following way. We created a
12 x 12 matrix R with elements R(i, ;) indicating
how many times weight class i was ranked at the
jth position aggregated over all 10 runs. We vi-
sualise the matrix R in the form of the contour plot
presented in Fig. 5.

There is broad agreement between both plots
concerning the relative importance of the inputs.
The dark zone in the contour plot at the inter-
section of rank 1 and the RecHistR variable
clearly indicates its importance. This variable was
10 times ranked first. The RecYearR and Rec-
YearN variables seem to be very useful as well.
Note that the RecYearR variable was always
ranked second over all 10 runs. These findings are
confirmed by the relatively low mean log(oy) val-
ues and narrow confidence intervals for the Re-
cHistR, RecYearR and RecYearN variables as
depicted in Fig. 4. The rankings of the variables
belonging to the Frequency category are concen-
trated in the zone covering ranks 4 to 8. This
suggests that these variables are of medium im-
portance to the NN prediction. The ranking of the
MonYearN variable is concentrated around rank
4. The other Monetary variables are ranked be-
tween ranks 8 and 12. Fig. 4 also indicates that the
MonYearN variable is the most important among
the set of Monetary predictors. Notice that neither
plot clearly indicates the irrelevance of predictors
included in the study. Therefore, we conclude that
a combined use of predictors of all three categories
is desirable for response modelling. Moreover, it
can be stated that the way a variable is opera-
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Fig. 4. Error bars for the log(e;) parameters for the basic RFM experiment.
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Fig. 5. Contour plot of the matrix R for the basic RFM experiment.

tionalised has a substantial impact on its predictive
performance.

8. Extended RFM experiment

8.1. Predictors used in the extended RFM experi-
ment

Apart from the RFM variables discussed in
Section 7.1, we now include 10 other customer

profiling features (referred to as ‘Other’ in Table 6)
[62].

The type and frequency of contact which cus-
tomers have with the mail-order company may
yield important information about their future
purchasing behaviour. The Genlnfo and GenCust
are binary customer/company interaction variables
indicating whether the customer asked for general
information, respectively, filed general complaints.
Since customer (dis)satisfaction may not only be
revealed by general complaints but also by re-
turning items, we included two extra variables.

Table 6

Operationalisations of both RFM and non-RFM variables used in the extended RFM experiment
Recency Frequency Monetary Other
RecHistN FrHistN MonHistN RetPerc Ndays IncrHist
RecHistR FrHistR MonHistR RetMerch Credit IncrYear
RecYearN FrYearN MonYearN ProdclaT Genlnfo
RecYearR FrYearR MonYearR ProdclaM GenCust
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The RetMerch variable is a binary variable indi-
cating whether the customer has ever returned an
item that was previously ordered from the mail-
order company. The RetPerc variable measures
the total monetary amount of returned orders di-
vided by the total amount of spending. The Ndays
variable models the length of the customer rela-
tionship in days. It is commonly believed that
consumers/households with a longer relationship
with the company have a higher probability of
repurchase than households with shorter rela-
tionships. IncrHist and IncrYear are operation-
alisations of a behavioural loyalty measure. We
propose to perform a median split of the length of
the relationship (time since the household became
a customer). This enables us to compare the
number of purchases (i.e. frequency) between the
first and last half of the time window. The fol-
lowing formula is used:

purchases second half — purchases first half
purchases first half

(22)

If the above measure is positive, this may give us
an indication of increasing loyalty by that cus-
tomer to the (mail-order) company, and ipso facto
satisfaction with the current level of service. Re-
member that the suffix Hist reflects that the whole
purchase history is used, whereas in the case of the
suffix Year, only transactions from the last year

are included. The mail-order company has internal
records whether a customer uses the credit facili-
ties. This may function as an indicator of the ex-
tent to which the customer values the financial
convenience of mail-order buying. Therefore, we
also include the binary Credit variable. The
ProdclaT, respectively, ProdclaM variables repre-
sent the total (7), respectively, mean (M) forward-
looking weighted productindex. The weighting
procedure represents the ‘forward-looking’ nature
of a product category purchase derived from an-
other sample of data.

8.2. Results and discussion of the extended RFM
experiment

The performance measurements of the extended
RFM experiment are presented in Table 7. The
setup of this table is analogous to that of Table 5.
In general, both the PCC and AUROC of the three
benchmark statistical classifiers rise about 1%
point due to the inclusion of the 10 extra variables.
Again, this is a result which may not be underes-
timated in terms of profit increases for the direct
marketing company (see Section 2). As confirmed
by the corresponding paired student’s t-tests, the
logistic regression classifier still yields the best
performance of all three statistical classifiers.

In this case, we opt for a Bayesian NN with
eight hidden neurons as our NN model of choice,

Table 7
Performance assessment of all classifiers for the extended RFM experiment
PCC AUROC
Train Test Train Test
Logistic regression 71.4+0.2 71.4+0.2 78.7+£0.2 78.6+0.2
Linear discriminant analysis 69.7+0.2 69.7+0.2 76.9+0.2 76.8+0.2
Quadratic discriminant analysis 65.0+0.8 64.9+0.7 733+1.2 732+1.2
NN 2 hidden neurons 72.34+0.3 722402 79.7+0.2 79.5+0.2
NN 4 hidden neurons 72.5+£0.2 72.4+£0.2 80.0 £0.2 79.7+£0.2
NN 6 hidden neurons 72.6 £0.3 723+£0.2 80.2+£0.2 79.7+£0.2
NN 8 hidden neurons 728 £0.3 72.4+£0.2 80.4+0.2 79.8+0.2
NN 10 hidden neurons 72.84+0.3 724402 80.4+0.2 79.8+0.2
NN 12 hidden neurons 72.8+0.3 724402 80.4+0.2 79.8+£0.2
NN 14 hidden neurons 72.8+0.3 724+0.2 80.4+0.2 79.8+0.2
NN ARD eight hidden neurons 72.5+0.3 724+0.3 80.0+0.3 79.7+0.2
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since at this point adding more hidden neurons
seems to provide no extra performance gains. Also
notice that for the Bayesian NN, performance
again increases about 1% point when compared to
the basic RFM experiment. This results in a mean
PCC of 72.4% and a mean AUROC of 79.8% on
the test set. Training an NN ARD with eight
hidden neurons yields a mean PCC of 72.4% and
mean AUROC of 79.7% on the test set, a result
that is comparable to the NN non-ARD results.
Again, Fig. 6 presents the 95% confidence in-
tervals for the o values on a logarithmic scale. The
matrix R associated with the weight class rankings
is depicted in the contour plot given by Fig. 7.
Among the RFM variables, the same relevance
patterns are present as for the basic RFM experi-
ment, thus essentially confirming the latter. The
rankings of the RetPerc, RetMerch, ProdclaT,
ProdclaM, Ndays, IncrHist and IncrYear vari-
ables are concentrated in the region of lesser im-
portance in the contour plot. When looking at
both plots, it can be observed that the Credit,
Genlnfo and GenCust variables are definitely
more relevant to the trained networks. The 1%

point performance rise may thus be especially at-
tributed to the inclusion of these three variables in
the extended RFM response model.

When comparing the results of this study to
those on similar data sets from the same anony-
mous company, reported in [62,65,66], we observe
that the insight gained using Bayesian neural net-
work methods generally confirms previous find-
ings. Most noticeably they also highlight: (1) the
importance of a combined use of all three RFM
predictor categories in predicting mail-order re-
peat purchase behaviour; (2) the performance
gains by including non-RFM variables into the
response model. However, there is some disagree-
ment considering the relative importance of some
of the RFM and non-RFM variables. These dif-
ferences may be due to: (1) different data sets from
different countries, resulting in a.o. diverging class
proportions (i.e., 38% buyers in [65,66] compared
to 55% buyers in this study); (2) inclusion of other
predictors or alternative transformations (e.g.
logarithmic transformation to reduce the skewness
in [65,66]); (3) the use of other classification tech-
niques (e.g. support vector machines in [66]) and
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Fig. 6. Error bars for the log(x;) parameters for the extended RFM experiment.
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Fig. 7. Contour plot of the matrix R for the extended RFM experiment.

input selection heuristics (e.g. hard sensitivity
based pruning in [65,66]).

9. Conclusion

In this paper, we focus on purchase incidence
modelling for a major European direct mail com-
pany. The case boils down to a binary classifica-
tion problem: Will the customer repurchase or
not? Response models based on statistical and
neural network techniques are developed and
contrasted. The latter are trained using Bayesian
neural network learning, a method that is fairly
robust with respect to the problems of overfitting
and (hyper)parameter choice, problems that are
typically encountered when implementing neural
networks. The evidence framework of MacKay is
used as an example implementation of Bayesian
learning. The automatic relevance determination
(ARD) method is an additional feature of this

framework that allows us to assess the relative
importance of the inputs. The basic response
models use operationalisations of the traditionally
discussed Recency, Frequency and Monetary
(RFM) predictor categories. In a second experi-
ment, the RFM response framework is enriched by
the inclusion of other (non-RFM) customer pro-
filing predictors. In this study, we contribute to the
literature by providing a thorough investigation
into: (1) the suitability of Bayesian neural
networks for repeat purchase modelling; (2) the
predictive performance of alternative operation-
alisations of RFM variables and their relative
importance; (3) the issue whether other (non-
RFM) variables add predictive power to the tra-
ditional RFM variables. By means of experimental
evaluation, it is illustrated that, from a perfor-
mance perspective, Bayesian neural networks offer
an interesting and viable alternative for purchase
incidence modelling. Performance of the trained
classifiers is measured using the percentage cor-
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rectly classified (PCC) and the area under the re-
ceiver operating characteristic curve (AUROC).
The ARD results advocate a combined use of all
three RFM predictor categories for response
modelling. Finally, as illustrated by a second ex-
periment, the inclusion of non-RFM variables al-
lows to further augment the predictive power of
the constructed classifiers. The ARD results
mainly attribute this rise to the inclusion of cus-
tomer/company interaction variables and to a
variable measuring whether a customer uses the
credit facilities of the direct mail company.
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