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Abstract: To improve the prediction abilities of machine learning methods, a support vector machine (SVM) on structural risk mini-
mization was applied to customer churn prediction. Researching customer churn prediction cases both in home and foreign carries, the
method was compared with artifical neural network, decision tree, logistic regression, and naive bayesian classifier. It is found that the
method enjoys the best accuracy rate, hit rate, covering rate, and lift coefficient, and therefore, provides an effective measurement for
customer churn prediction.
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1 Introduction

Customer churn is a concern for several industries, but
it is particularly acute in the strongly competitive and now
broadly liberalized mobile telecommunication industry[1].
It is estimated that the average churn rate for the mo-
bile telecommunication is 2.2% per month[2]. Losing cus-
tomers not only leads to opportunity costs because of re-
duced sales, but also leads to an increased need of attracting
new customers[2]. The cost of acquisition of a new cus-
tomer is estimated to be ranging from $ 300 to $ 600[3],
and it costs roughly 5∼6 times as much to sign on a new
customer as to retain an existing one[4]. To predict the la-
tent churn customers, several researchers have mainly pre-
sented the following two methods: the first is the traditional
classification methods, including decision tree[5], logistic
regression[6, 7], naive bayesian classifiers[8], clustering[9].
The methods can be used to analyze qualitative data and con-
tinuous data, and interpret the prediction models. However,
it cannot guarantee the precision and generalization ability
of the constructed models for large scale, high dimensional-
ity, nonlinearity, and time series data etc.; the second is the
artificial intelligence method, including artificial neural net-
work (ANN)[10], self organizing maps (SOM)[11], and evo-
lutionary leaning (EL)[12] etc. The methods can overcome
the above difficulties, and the models using the methods have
nonlinear mapping ability, strong robustness, and good pre-
diction precision[10]. However, the methods based on em-
pirical risk minimization always lead to low generalization
ability and fuzzy construction of the models[13]. Above
methods have been limited in real application. Therefore,
the necessity to explore new prediction approaches is strong
and urgent.

To solve the above problems, the article proposes the

support vector machine (SVM) with structural risk mini-
mization and the new model evaluation standard (includ-
ing hit rate, covering, and lift coefficient) for customer
churn prediction, and it is based on the researches from
literature[13] using SVM at the earliest stage, and from
literature[14] using the evaluation standard with the whole
accuracy rate and by controlling wrong judge with the
weight SVM. The method supposes that if the customer data
can accurately be separated by the hyperplane, which is the
closest to the data vector plane, optimal separating hyper-
plane and classification decision function can be guaranteed.
If the data vectors are linear and inseparate, a new coefficient
needs to be used to control the penalty for wrong separat-
ing samples. Based on selecting the appropriate parameters
and kernel functions, SVM was compared with the artificial
neural network, decision tree, logistic regression, and naive
bayesian classifier for customer churn prediction in home
and foreign telecommunication carriers. It is found that the
method has better precision.

2 Principle and arithmetic based on structural
risk minimization standard

2.1 Structural risk minimization
Customer churn prediction is based on the assumption

that an unknown dependence relationship exists between
churn variable y and customer information variable x, that
is to say, there exists an unknown joint probability distribu-
tion P (x, y). To minimize the anticipant expectation risk or
the actual risk

R(w) =
∫

c(y, f(x,w))dP (x, y) (1)

Customer churn prediction on machine learning aims at
computing the dependence relation using a optimal function
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f(x,w0) in a set of {f(x, w)}when there exist l independent
identical distribution samples (x1, y1), (x2, y2), · · · , (xl, yl).
Note that {f(x,w)} is the decision function set;w is the gen-
eral parameter; and c(y, f(x,w)) is the loss function using
f(x,w) to predict y. However, unknown P (x, y) cannot be
directly computed for minimization expectation risk by only
using sample information. Therefore, the traditional meth-
ods use empirical risk

Remp(w) =
1
l

l∑
i=1

c(yi, f(x,w)) (2)

minimization to replace actual risk minimization, that is, em-
pirical risk minimization standard.

Since the computing of the actual risk is very diffi-
cult, the researchers can only resolve the empirical risk min-
imization problem in several years. The relationship be-
tween empirical risk and expectation risk has been opened
out because of the emergence of the statistics learning the-
ory. If loss function c(y, f(x,w)) is a generic boundary
nonnegative real function (using 0-1 loss function, that is to
say, the expression of 0-1 loss function is c(y, f(x,w)) =
ĉ(y − f(x, w)) for decision function f(x, w), note that

ĉ(ξ) =
{

0, ξ = 0;
1, ξ �= 0. ), and there exists leastwise 1 − δ

probability between empirical risk Remp(w) and actual risk
R(w) to define

R(w) ≤ Remp(w) +

√
h(ln(2l

h ) + 1) − ln( δ
4 )

l
(3)

Note that h is the VC dimension of function set, and l is the
number of samples. Eq.(3) defines the quantitative estima-

tion of empirical risk. The second item
√

h(ln( 2l
h )+1)−ln( δ

4 )

l
of the equation’s right is the VC confidence interval or confi-
dence risk, and the summation of the right is structural risk.
The equation is the upper bound of empirical risk R(w).
According to Eq.(3), the upper bound is the summation of
empirical risk and confidence risk, where empirical risk de-
pends on the selection of f(x, w), and confidence risk is the
increasing function h of VC dimension.

Further, when {f(x,w)} is biggish, the appropriate
f(x,w) leads to the lesser Remp(w), but the biggish h of
VC dimension can acquire the biggish confidence risk. Con-
trarily, when function set is lesser, h of VC dimension and
confidence risk is lesser, but Remp(w) is biggish. Therefore,
the conflicting tendency exists in empirical risk and confi-
dence risk. To select the appropriate assumption f(x,w),
structural risk minimization is introduced.

Vapnik proposed a new strategy[13], according to
which the function subset series in function set was con-
structed on the size of the VC dimension in all subsets; to
acquire actual minimization risk, there exists the tradeoff be-
tween empirical risk and confidence risk in the subsets by
searching least empirical risk (Figure 1). The idea is named
as structural risk or sequence risk minimization.

2.2 Support vector machine principle and algorithm
SVM is a new machine learning method based on

structural risk minimization, and the kernel contents were

Figure 1. Structural risk minimization standard

proposed in 1992–1995[15], which are still under constant
improvement.

SVM was initially proposed for the linearly separable
binary problems of pattern recognition. We assume that the
linearly separable sample set is (xi, yi), i = 1, 2, · · · , l, xi ∈
Rn, yi ∈ {−1, 1} (yi is the ith class label).

The linear discriminant function is defined as g(x) =
w ·x+ b in n dimension space, where w ·x is the inner prod-
uct of w ∈ Rn and x ∈ Rn vectors. The classification plane
equation can be written as

w · x + b = 0 (4)

To let two classes of samples meet |w · xi + b| ≥ 1, i =
1, 2, · · · , l, the discriminant function is normalized by adjust-
ing w and b proportionably. Then, since the classification
margin is 2/||w||, the computing of the maximum margin is
converted to that of the minimum ||w||. When the samples
meet |g(x)| = 1 and the distance is least between the sam-
ples and classical plane, the samples are defined as support
vectors and construct the optimal classification plane.

Further, the optimization classification problem turns
into

min ø(w) =
1
2
||w||2 =

1
2
(w · w) (5)

s.t. yi((w · xi) + b) − 1 ≥ 0, i = 1, 2, · · · , l.
Then, the lagrange function is introduced in

L(w, b, a) =
1
2
||w||2 −

l∑
i=1

ai(yi((w · xi) + b) − 1), (6)

where, a = (a1, · · · , al)T ∈ Rl
+ are lagrange multipliers.

Therefore, Eq.(5) can be written as

minQ(a) =
1
2

l∑
i=1

l∑
j=1

aiajyiyj(xi · xj) −
l∑

i=1

ai (7)

s.t. ai ≥ 0, i = 1, 2, · · · , l, ∑l
i=1 yiai = 0.

b∗ = yi −
∑l

i=1 yiai(xi · xj) is given by computing the
optimal solution a∗ = (a∗

1, · · · , a∗
l )

T of Eq.(7), computing
w∗ =

∑l
i=1 yiaixi, and selecting positive a∗

i of ai. Then,
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by constructing discriminant equation (w∗ · x) + b∗ = 0, we
obtain decision function

f(x) = sgn((w∗ ·x)+b∗) = sgn

(
l∑

i=1

a∗
i yi(x · xi) + b∗

)
.

(8)
Vapnik introduced the kernel space theory for the lin-

early non-separable problem[13]. The above SVMs are de-
signed for binary classification. The SVM for multiclass
classification is by constructing and combining several bi-
nary classifiers. The former approach mainly includes three
methods: One-Against-All (OAA)[16], One-Against-One
(OAO)[17] and Binary-Tree-Architecture (BTA)[18].

3 Empirical research of customer churn
prediction on support vector machine
in telecommunication

3.1 Data processing
We collected data sets from the machine learning UCI

database of University of California[19] (data set 1) and a
home telecommunication carry (data set 2).

(1) Data set 1
In the data set, the definition of customer churn was

a cellular phone customer who does not enjoy all services
of telecommunication carry, where data window is continu-
ously 3 months. When the fourth month customer statuses
were defined as the output of model, the input of the model
was obtained by converting call record, customer bill, and
services etc. into the value of all attributes. Currently, the
indexes of customer churn were basic character, call behav-
ior, contact information, contract information, and product
characteristic, etc. According to the Delta strategy model of
customer churn management from Wei, etc.[20], influence
factors, and data acquisition, we selected the indexes of call
behavior and contact information (Table 1). The anomaly
data were eliminated by the twice and thrice standard de-
viation test. By over sampling, we finally obtained 3333
training data from data set 1 (i.e., 2850 non-churn customers
and 483 churn customers) and 1667 testing data at the same

time of training data from data set 2 (i.e., 1443 non-churn
customers and 224 churn customers). By factor analysis in
SPSS11.5 for training data, the number interpreting factors
were 7 and the accumulative variance was 74.08% when the
eigenvalue was more than 1. Further, the indexes were de-
fined as night charge willingness factor, day charge willing-
ness factor, international long call charge willingness factor,
evening charge willingness factor, usage time factor, cus-
tomer care factor, and call frequency factor. (Table 1)

(2) Data set 2
In the data set, the definition of customer churn is that

customers with personal access phone removed the phones
or cancelled the phone numbers. The data were collected
from July to November in 2006, where, the data window
was from July to September and the delay time was Octo-
ber. When customer statuses in November were defined as
the output of the model, the input of the model was obtained
by converting the call record, customer bill, and services etc.
into the value of all the attributes in the data window.

Among the customers, if the samples were interior em-
ployee, group customer, the customers whose time of usage
were less than 4 months and had no consumption for the con-
tinuous 2 months in the above 4 months could be excluded.
The index selection was based on data set 1.

Owing to the instability of collecting data, there existed
several data with missing value. Then, the indexes with more
than 30% missing values needed to be deleted; the missing
items were supplemented using the equal value of the in-
dexes; The anomaly data were eliminated by the twice and
thrice standard deviation test. By over sampling, we finally
obtained 1474 training data from data set 2 (i.e., 852 non-
churn customers and 622 churn customers) and 966 testing
data at the same time of training data from data set 2 (i.e.,
534 non-churn customers and 432 churn customers). By fac-
tor analysis in SPSS11.5 for training data, the number of in-
terpreting factors was 3 and the accumulative variance was
89.75% when the eigenvalue was more than 1. Further, the
indexes were defined as voice call factor, message sending
factor, and message receiving factor (Table 2).

Table 1. Factor analysis results of data set 1

Factor Index
Variance

contributing rate
(%)

Night charge willingness factor Night call charges, night call minutes 13.34
Day charge willingness factor Day call charges, day call minutes 13.34
International long charge willingness factor International long call charges, international long call minutes 13.34
Evening charge willingness factor Evening call charges, evening call minutes 13.33
Usage time factor Serves months, day call times 7.02
Customer care factor Customer care times, message times 6.86
Call frequency factor Evening call times, international long call times, night call times 6.85

Table 2. Factor analysis results of data set 2

Factor Index
Variance
contributing
rate (%)

Voice call factor Call minutes, call charge minutes, call charge times, call times, call charges 43.20
Message sending factor Message sending times, message sending times from customer to user, message sending charges 29.99
Message receiving factor Message receiving times, Message receiving times from user 16.56
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Table 3. Kernel function

Name of kernel Function expression

Radial basis kernel
function

K(x, y) = e

−u

n∑
i=1

(xi−yi)
2

Symmetry triangle
kernel function

K(x, y) =
n∏

i=1

max(1 − u|xi − yi|, 0)

Cauchy kernel function K(x, y) =
n∏

i=1

1
1+(u(xi−yi)2)

Laplace kernel function K(x, y) =
n∏

i=1

e−u|xi−yi|

Square sine kernel
function

K(x, y) =
n∏

i=1

sin2[u(xi−yi)]

u2(xi−yi)2

Polynomial kernel
function

K(x, y) = (
n∑

i=1

xiyi + 1)u

Hyperbola secant
kernel function

K(x, y) =
n∏

i=1

2

eu(xi−yi)+e−u(xi−yi)

Linear kernel function K(x, y) =
n∑

i=1

xiyi

3.2 Construction of support vector machine model
According to the above analysis, the sample set (x, y)

was constructed using the input data from x and the out-
put data from y, where non-churn customers were rewrit-
ten as y = −1 and churn customers were rewritten as
y = 1. The kernel functions must not only meet the Mer-
cer condition[21] but also reflect the distribution character-
istic of training data in fact. Since there are no methods
of selecting kernel functions for building the model, the se-
lection of kernel functions needs to depend on transcendent
information[22] and empiricism. In addition, to adjust the
generalization ability of the model, the proportion between
the confidence range and the empirical risk can be adjusted

by parameter C. When C is small, the model is underfitting
because of small empirical error, simple classification plane,
and big training error; When C is big, the model is overfit-
ting because of big empirical error, and the small weight of
the classification plane normal. Therefore, it is important to
select an appropriate C. Compared with the functions of Ta-
ble 3[13] using MATLAB6.5 to select kernel functions and
the parameters, it is found that the SVM model based on
w · x + b = 0 can acquire good results using the radial basis
kernel function with u = 0.12, C = 3 in data set 1 (Table
4); in addition, the SVMmodel using cauchy kernel function
with u = 11, C = 0.3 can acquire good results in the data
set 2 (Table 5).

3.3 Analysis of empirical results

By selecting the best parameters and precision of the
prediction model, Tables 7 and 8 show the prediction re-
sults of the SVM model compared with the other meth-
ods in dataset 1 and dataset 2. ANN used BP arith-
metic, 8 and 5 hidden layers, 0.1 error, and discriminant:
f(

∑nH

j=1 wif (
∑d

i=1 wjixi + wj0) + w0) where, f(·) was
sigmoid function; wji was the weight from input cell i to
hidden cell j; nH was the number of hidden layers; d was
the dimension of x; wj0 and w0 were the values of inner
cells. The attributes of the decision tree C4.5 were com-
puted using the discriminant: P (w0|A = 0), i.e., the in-
formation gain method, where, P (·) was condition prob-
ability; and wi was the classification type. The infor-
mation gain ratio Gaintatio(X,A) = Gain(X,A)

SplitIF (X,A) was
maximum when A was choice attribute (note that X was
split into S1, S2, · · · , Ss subsets on S different values of A,
where, Gain(X, A) was information gain by splitting S;
SplitIF (X,A) was information quantity). The discrimi-
nant of logistic regression was 1/(1 + exp(1 − (b0+

Table 4. SVM prediction results using the different kernel functions in dataset 1

Function C u AR HR CR HC
Radial basis kernel function 3 0.12 0.9088 0.8333 0.4018 6.2186
Symmetry triangle kernel function 3 0.12 0.9046 0.8218 0.3705 6.1328
Cauchy kernel function 3 0.12 0.9058 0.819 0.3839 6.1119
Laplace kernel function 3 0.12 0.9022 0.7699 0.3884 5.7455
Square sine kernel function 3 0.90 0.9022 0.7699 0.3884 5.7455
Polynomial kernel function 1 3 0.8716 0.7273 0.0714 5.4276
Hyperbola secant kernel function 3 1 0.8914 0.6838 0.3571 5.1029
Linear kernel function 1.5 — 0.7972 0.2808 0.3259 2.0955
Notes: linear kernel function has no parameter u; C and u are the parameters of the model; AR is the accuracy rate; HR is the hit rate; CR

is the coverage rate; HC is the lift coefficient.

Table 5. SVM prediction results using the different kernel functions in dataset 2

Function C u AR HR CR HC
Radial basis kernel function 2 1 0.5911 0.7126 0.1435 1.5942
Symmetry triangle kernel function 11 0.025 0.5880 0.7073 0.1343 1.5823
Cauchy kernel function 11 0.3 0.5963 0.7141 0.1620 1.5975
Laplace kernel function 11 0.03 0.5828 0.6381 0.1551 1.4275
Square sine kernel function 9 2 0.5932 0.7010 0.1574 1.5682
Polynomial kernel function 20 4 0.5538 0.6000 0.0069 1.3423
Hyperbola secant kernel function 10 0.5 0.5694 0.7000 0.0648 1.5660
Linear kernel function 0.71 — 0.5538 1.0000 0.0023 2.2371
Notes: linear kernel function has no parameter u; C and u are the parameters of the model; AR is the accuracy rate; HR is the hit rate; CR

is the coverage rate; HC is the lift coefficient.
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Table 6. Classification matrix

Customer state Prediction churn Prediction non-churn
Actual churn A B
Actual non-churn C D

Table 7. Prediction results compared with all the methods
in dataset 1

Model type
Accuracy
rate

Hit
rate

Coverage
rate

Lift
coefficient

SVM 0.9088 0.8333 0.4018 6.2186
ANN 0.8983 0.7538 0.3625 5.6256
Decision tree C4.5 0.8386 0.3869 0.3437 2.8876
Logistic regression 0.8716 0.6190 0.1160 4.6198
Naive bayesian classifiers 0.8782 0.7142 0.1562 5.3305

Table 8. Prediction results compared with all the methods
in dataset 2

Model type
Accuracy
rate

Hit
rate

Coverage
rate

Lift
coefficient

SVM 0.5963 0.7141 0.1620 1.5975
ANN 0.5569 0.7500 0.0139 1.6779
Decision tee C4.5 0.5248 0.4657 0.4236 1.0417
Logistic regression 0.5890 0.7012 0.1412 1.5686
Naive bayesian classifiers 0.5549 0.6250 0.0116 1.3982

∑d
i=1 bixi))) − 1

2 = 0, where, b0 was constant; d was di-
mension; and b was regression coefficient, which was the
contributing quantity from x for the discriminant. The dis-
criminant of naive bayesian classifiers was p(x|wi)P (wi) −
p(x|wj)P (wj) = 0, where, wi and wj were the classi-
fication types; p(x|w) was the condition probability den-
sity; and P (w) was the transcendent probability. Table 6
shows the evaluation standard of the model: model accu-
racy rate=(A+D)/(A+B+C+D); hit rate=A/(A+C); coverage
rate= A/(A+B); lift coefficient=hit rate/churn rate of the test-
ing. In Tables 7 and 8, the accuracy rate (0.9088), hit rate
(0.8333), coverage rate (0.4018), and lift coefficient (6.2186)
in dataset 1 using the SVM model are superior to the other
methods; the accuracy rate (0.5963), hit rate (0.7141), cov-
erage rate (0.1620), and lift coefficient (1.5975) in dataset1
using the SVM model are superior to the other methods ex-
cept that ANN in the hit rate and decision tree C4.5 in the
cover-age rate are slightly superior to the proposed method,
where, the main reasons are that the coverage rate (0.0139)
of ANN leads to the overfitting phenomena, and there exists
little influence in the rare classes for the decision tree. In
addition, the reason why the prediction precision in dataset1
is superior to that in dataset 2 is that there exist less data
indexes, indistinct churn trend, serious missing record, long
delay time, and so on, in dataset 2. The good accuracy rate
shows that the SVM model has strong integration predic-
tion ability in the whole datasets; the good lift coefficient
and coverage rate show that the model can keep more latent
churn customer with less cost in the telecommunication mar-
kets with different churn rates. The reason why the good re-
sults are acquired using the SVM model, which have appro-
priate kernel function and parameter is that the SVM model
on structural risk minimization includes empirical risk mini-
mization and confidence minimization.

4 Conclusions

SVM is a general learning arithmetic based on the
statistics learning theory, and it can solve the nonlinearity,
high dimension, and local minimization problems, which
are insoluble for traditional methods in the customer churn
prediction of telecommunication. The article used SVM to
predict customer churn in the telecommunication, and com-
pared with BPANN, decision tree C4.5, logistic regression,
and naive bayesian classifiers. It then draws the conclusion
that the traits of SVM are the simple classification plane,
strong generation ability, and good fitting precision etc. from
the methodology. From data condition and structure, when
there exist several samples (abundant support vectors), abun-
dant attribute, big churn rate, less missing record, and non-
linearity data, SVM has good prediction precision. In ad-
dition, the article also finds according to the above analysis
that the customers with big churn rate have the following
traits in dataset 1: strong charge willingness, long mobile
service, and considerable customer care; the customers with
big churn rate have the following charactersitics in dataset 2:
regular call and message usage. The results show that when
telecommunication carries keep the customers with long call
usage, the carries need to use favourable sales promotion
work, increase the times and quality of customer care, and
improve the increment service to keep the customers with
several call charges. However, since the above methods are
initially used to predict customer churn, there exist some
problems, for example, how to select fitting kernel function
and parameter; how to weigh customer samples. In addition,
since the traits of customer churn data in the telecommuni-
cation are of large scale, high dimension, nonlinearity, non-
normality, time series, and rare class, SVM can also be de-
veloped in the bank industries using similar customer churn
data.
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