m:._tn.in.s.m
BYy10 uonualay
ejeq

|| wswabeuep %
e uoneinbyuo) E funewnsa-ay
~ spnpoud pue bunewns3
iom adueinssy y Ssjujeisuoy
o Kajend pue saandasq w

= \ GOnePIen TS -.ww__.wmeﬂ :m_a_z_uon e m:__v...:dnam ALI.EAI |
i — 3 1A} :
A 2 3 / E

A

e || Ssexoid sjuie1jsuo) pue
uswdojanag sjuswialinbay m
EYCYTRYIITS !
sjioday wajqoLg sjsanbay abuey) |

] (P1q) “H pogory

's109l0.1d aiemyog
Buipes anv
buibeue|\

G

118VT1IVAY MNI1

MMM

ROJECT PLANNING TECHNIQUES

1t the SPMP is ‘op
ablhty of the

:Failing to plan is planning to fail.
—Alan Lakein

1 INTRODUCTION TO PROJECT PLANNING TECHNIQUES

vious chapters of this text have addressed the requircments, constraints, and

ctives elements of the workflow model in Figure 1.1 of Chapter I (repeated here |
igure 5.1), the roles of customer and management, and the nature of plans and 1
anning. This chapter is concerned with the planning, activity definition, and esti- |
ing elements highlighted in Figure 5.1. Additional estimation techniques are |
ented in Chapter 6.

lanning techniques, activity definition, and estimation of effort and schedule

udes the following activities, which arc a subset of the activities contained in

le 4.15 in Chapter 4.

§
Develop an architecture decomposition view (ADV) of the product architec- |
ture and allocate requirements to the elements of the ADV
Develop a work breakdown structure that includes work elements for the ADV
modules and the allocated requirements for each element of work
Develop work ~packages for the tasks in the work breakdown structure
(WBS)
Define a schedule of objectively measurable milestones
Prepare a schedule network and identify the critical path(s)

ging and Leading Software Projects, by Richard E E. Fairley
ight © 2009 [EEL C omputer Society

174 PROJECT PLANNING TECHNIQUES

Change Requests and Problem Reports

Requirements
and Constraints Development
¢ Process
> Customer Y] Plannin -
ustomer and g o Activity)yor.k - | Independent | _|
. L ssign
; deli
Directives and Quality e 'f"ed
Constraints - - Assurance work
Estimating and products
Re-estimating Controlling Configuration | |
4\ Management
Data
Retention| /| ...

Project Reports Status Report
! P ! ReportingJ<—l Measuring J< atus Reports

FIGURE 5.1 Project workflow, cmphasizing planning, estimating, and activity definition

* Prepare a PERT cstimate of project duration

- Identify numbers and kinds of resources needed, when they will be needed, and
for how long ‘

« Prepare an estimate of optimal effort, cost, schedule, and resources

+ Negotiate with the customer to obtain a balance among requirements, cost, and
project duration that satisfics the project constraints

It is sclf-cvident that you cannot prepare a plan for developing a software product
if you don't know what product to make. It is equally evident that the more you
understand about the product to be made, the more confident you will be in the
details of your plan. The initial version of your project plan will be, by necessity,
high level and imprecise; however, you can refine the plan as the architectural struc-
ture of the product evolves and as your understanding of the project grows based
on clarification of the product foundations covered in Chapter 3 of this text (system
requirements, system architecture, software requirements, and design constraints).
Planning is thus an iterative process; the more you understand about the product
the betier plan you can make.

52 OBJECTIVES OF THIS CHAPTER

After reading this chapter and completing the exercises. you should understand:

- the scope of planning

« rolling-wave planning

- scenarios for developing a project plan

+ developing an architecture decomposition view

5.4 ROLLING-WAVE PLANNING 175

+ devcloping a work breakdown structure
- developing the project schedule

+ developing resource profiles

- resource Gantt charts

» estimating project cost

delivered The planning techniques presented in this chapter are informed by the Project
work Planning process arca of the CMMI-DEV-v1.2 process framework, the planning

Products elements of 1ISO and [EEE Standards 12207, IEEE Standard 1058, and the PMI
Body of Knowledge. These elements are described in Appendix SA to this
chapter.

Terms used in this chapter and throughout this text are defined in the Glossary
at the end of the text. Presentation slides for this chapter and other supporting
material arc available at the URL listed in the Preface.

J
definition N
53 THE SCOPE OF PLANNING
The scope of your project may involve developing requirements, negotiating sched-
ule and budget, acquiring facilities and resources. building the software product.”
ded installing it. training uscrs, and maintaining the system on an ongoing basis. Or, you
eded, an

may be handed a set of changes to be made along with a schedule and a budget and
be given the responsibility of managing a projcct to make the modifications. Or,
your project may fall somewherc between these extremes. In any case, this chapter
(and this cntire text) considers the full scope of activities that may be required to
manage large and complex software projects. As emphasized throughout this text,
the activities of project management must be adapted and tailored to fit the needs
of each project.

£ 5.4 ROLLING-WAVE PLANNING

Rolling-wave planning acknowledges that it is impossible to develop plans at the
. level of detail indicated throughout this chapter during the initial planning phase
f your software projects. When you are conducting a project, a recommended
pproach is to augment the high-level master plan with detailed plans for the coming
-month, for the subsequent month, and for three months hence. Fach month the
g plans are moved forward one month, that is, moved forward in a rolling-wave
anner. The plans for the next month should be detailed and specific. The plans for
two and three months hence should be as specific as possible. Rolling the three-
onth plan forward cach month provides an opportunity to:

Software products are built by vendors for sale to numerous customers; soltware systems are built by
ntractors for specific individual customers on a contractual basis. The terms “system™ and “product”
¢ used interchangeably in this text unless the distinction is important; the distinction will be clarified
‘these cases.

-, . ..

176 PROJECT PLANNING TECHNIQUES

month n planning: A, N*1, n+2
month n+1 planning: R+, N+2 n+3

month n+2 planning: "2, N+3 n+4

y

project duration

FIGURE 5.2 Rolling-wave updating of detailed plans cach month

* have resources available when they arc needed,
* clear roadblocks and coordinate work activities. and

* identify and confront risk factors before they become problems.

Rolling-wave planning is illustrated in Figure 5.2.

5.5 SCENARIOS FOR DEVELOPING A PROJECT PLAN

At minimum, you must have some operational requirements for the product oy
system to prepare the initial version of your plan. Idcally you would have prioritized
operational requirements, technical specifications, a functional block diagram. and
a decomposition view of the product’s architectural structure on which to base vour
plan. However, this ideal basis is scldom realized when preparing the initial version
of a project plan.

Initial planning typically proceeds from one of the following scenarios:

I. You arc given a set of operational requirements and constraints on one or more
of the schedule. budgct, and resources. For example, a system that will have a speci-
fied list of operational features and quality attributes must be delivered in 9 months:
6 software developers are available to implement the system. Your tirst ask is to
determine whether it is feasible to build the envisioned product (or modify an exist-
ing product) within thosc parameters. This may involve working with the customer
to clarify the requirements and using historical data and rules of thumb to determine
the feasibility of the project.

If the project is not feasible, with a high probability of success, you and your
customer must prioritize the requirements into Essential, Desirable. and Optional
categories (which is always a good thing to do). It must be possible to implement
all of the Essential requirements, with a very high probability of success, within the
development constraints on schedule, budget, and resources. The customer must
agree to accept a product that implements all of the Essential requirements and as
many of the Desirable requirements as can be implemented within the constraints
onschedule, budget, and resources. Or, the development constraints must be relaxed,
or some combination of de-scoping the requirements and relaxing the development
constraints must be pursued.

2. Youmay be given a list of features and quality attributes and asked to estimate,
and then commit to, the schedule, budget, and resources needed to develop a system

5.6 DEVELOPING THE ARCHITECTURE DECOMPOSITION VIEW 177

or product having those features and quality attributes. In this case you must first
review. clarify, and elaborate whatever product information is available. You should
pot commit to requirements that arc infeasible because of the current state of tech-

4, nology or lack of expertise in your organization; those requirements should be
—_ labeled as design goals to be achieved to the extent possible. In this scenario, you

should prepare a range of estimates with associated probabilities of success and
make a commitment to an estimate having not less than 90% probability of success.
The assumptions on which your estimate and commitment are based must be docu-
mented and accepted by your customer.

each month

3. You may be given a completion date and a budget and be asked to determine
the characteristics of a product that can be built or modified within the constraints
of specified time and money. For example. what operational features and quality
attributes can you and 6 of your software developers build and deliver in 9 months

‘oblems. . . .
for a product of a specified kind?
In any casc. your initial project plan must achicve a balance among requircments,
schedule, budget, resources, and technology. Subsequent revisions of your plan
\N must maintain this balance as requirements and other factors change. In all

cases, your first task in developing a project plan is to review, clarify, and further
elaborate whatever information is available concerning the product to be built or
modified.

For cach of the scenarios above. the next step is to refine the requircments to
remove arcas of uncertainty and to preparc a decomposition view of the product
architecture and a work breakdown structure as a basis for preparing a more
accurate estimate.

s for the product
ould have prioritize,

5.6 DEVELOPING THE ARCHITECTURE DECOMPOSITION VIEW

)) AND THE WORK BREAKDOWN STRUCTURE
1at will have spe

:livered in 9 m

i Architectural design of software is concerned with specifying the software modules,
Your first tag

their interrelationships, and their connections to the cnvironment of the soltware.
Several different kinds of views arc used to document different kinds of relation-
ships. The views arc depicted using notations. such as those illustrated in Figure 5.3,
to document structural, functional, and behavioral relationships. Other architectural
views arc also uscful [Bass03].

A partial ADV for ATM software is presented in Figure 5.4. Note that the
requircments listed in Table 5.1 arc allocated to the leaf nodes of the financial
fransactions component of the ADV.

Note the use of terms “shall” for Essential requirements, “should” for desirable
requirements, and “could” for Optional requirements. “shall” is a contractually
binding term; “should” indicates desired but not essential requirements; “could”
indicates options that could be included if time, budget, and resources permit.

Figure 5.54 illustrates a tree-structured representation of a work breakdown
structurc (WBS) for the ATM project. An alternative representation (an indented
- list) is presented in Figure 5.5b. The leaf nodes of the tree (or the list) specify tasks.
A fask is a smallest unit of project planning, measurement, and control. The higher
- level nodes in a WBS are activities; activities are composed of subordinate activities

178 PROJECT PLANNING TECHNIQUES

structure
00 class diagrams
ADV (architecture decomposition view)

function
0O class methods
data flow diagrams

behavior
state diagrams
sequence diagrams

FIGURE 5.3 Three architectural views of software and examples of notations used. The
architecture decomposition view (ADV) specifies the hierarchical “is-part-of " relationship
among soltware modules. The ADV is used by project managers (you) 1o develop the work
breakdown structure (WBS)

ATM

Sottware

|
r‘lli e wfw uu{m

| Validator I IiPmccssor;] l Rccordch

i1, E2 3. DI, D2, D3 E4, 135 ko, D4
01,02, 03

ATMID: Hardware Drivers

FINAT: Financial Transactions
MAINT: Maintenance and Diagnostics
COMM: Communications Package

FIGURE 5.4 A partial architecture decomposition view (ADV) of ATM software

and tasks. The rclationships among activities and tasks in a WBS are thus contain-
ment or “is-part-of” relationships in the same way that the relationships among
software module in an architectural decomposition view are “is-part-of” relation-
ships among the modules.

The WBS is a fundamental tool for planning, estimating, measuring, and control-
ling a software project. The role of a WBS is to partition the activitics and tasks of
a software project into manageable units with clearly defined roles. responsibilitics.
and authoritics for each unit. In addition a WBS depicts the interfaces and lines of
communication among work activitics and tasks. One of the primary design criteria

5.6 DEVELOPING THE ARCHITECTURE DECOMPOSITION VIEW 179

ABLE 5.1 Some prioritized requirements for ATM software

Essential requirements

Financial transactions shall be authorized by an ATM card and a password

Financial transactions shall be terminated if a customer fails to enter the
correct password «settable» times

Financial transaction shall allow quick cash withdrawals

Financial transaction shall provide a printed receipt for each transaction

The ATM shall retain the information listed in the requirements specification,
scction 3.2.1, for each customer transaction

Financial transaction shall process Terminate requests from customers

s methods
v diagrams

Desirable requirements

Financial transaction should accommodate balance inquiry transactions
Financial transaction should accommodate standard withdrawal transactions
Financial transaction should accommodate deposit transactions

Customers should be allowed to conduct multiple transactions per session

of notations used. T
“is-part-of” relationsh
bu) to develop the wg

Optional requirements
Financial transaction could support debit card transactions
Financial transaction could support payment of utility bills

Financial transaction could allow customers to purchasc postage stamps which
will be disbursed by the ATM hardware

ATM
Project

|
! | I | I N

1Manage 2 Do System 3 Develop 4 Verify 5Vvalidate 6 Perform 7 Prepare 8 Deliver

Project. Analysis Software System Sy?tem CIM Tech. Pubs. System
| ! | | |
{ I !]
3.1. Build 3.2. Build 3.3. Build 3.4. Buy
ATMHD FINAT MAINT COMM 3.5. Integrate

| | ATMHD, FINAT,
MAINT & COMM

| I I [1

2.1 Build 3.2.2 Build 3.2.3 Build 3.2.4 Build 3.2.5 Integrate
Processor Recorder Terminator FINAT modules
[E1, E2) (E3,D1,D2,D3, [E4, E5] [E6, D4]
01, 02, 03]

3.2.11 3221 3.2.31 3.24.1 DEST

DESV DESP DESR

3.21.2 3.222 3232 3.242 CUTT

CuTV CUTP CUTR

3213 3.223 3.2.33 3.2431TT™M

ITVM ITPM ITRM

ESx: detailed design of module x; CUTx: coding & unit testing x; ITxC: integrating and testing of x

FIGURE 5.5A Tree-structured form of a WBS

180 PROJECT PLANNING TECHNIQUES

1 Manage Project
2 Do System Analysis
3 Develop Software
3.1 Build ATM Hardware Drivers (ATMHD)
3.2 Build Financial Transaction Handler
3.2.1 Build Validator [E1, E2]
3.2.1.1 Design Validator
3.21.2 Code & Unit Test Validator
3.2.1.3 Integrate & Test Validator
3.2.2 Build Transaction Processor (FINAT) [3, 81, D2, D3, 01, O2, 03]
3.2.2.1 Design Transaction Processor
3.2.2.2 Code & Unit Test Transaction Processor
3.2.2.3 Integrate & Test Processor Components
3.2.3 Build Recorder [E4, E5]
3.2.3.1 Design Recorder
3.2.3.2 Code & Unit Test Recorder
3.2.3.3 Integrate & Test Recorder Module
3.2.4 Build Terminator [E6,D4)
3.2.4.1 Design Recorder
3.2.4.2 Code & Unit Test Recorder
3.2.4.3 Integrate & Test Recorder Module
3.2.5 Integrate FINAT Modules
3.3 Build Maintenance & Diagnostic Module (MAINT)
3.4 Buy the Communications Package (COMM)
3.5 Integrate ATMHD, FINAT, MAINT, and COMM
Verify System
Validate System
Perform CM
Prepare Technical Publications

@ N O A

Deliver System

FIGURE 5.5B Indented form of a WBS

for developing the decomposition view of software architecture (the ADV) is to
decompose the product in a manner that permits assignment of concurrent work
tasks to different teams and individuals; there is thus a close relationship between
designing a software product and designing the work activitics to build the product.
This criterion can be stated as follows:

The decomposition view of software architecture (the AD V) must be structured 1o
provide concurrent work assignments for those available to develop the so fitware.

Conversely, it can be said that the structure of the team that develops the software
will influence the decomposition view of the delivered software [Conway6d].

The distinction between an ADV and a WBS is often blurred by embedding the
ADV directly into the WBS without rephrasing it. This blurring must be avoided.
The elements of an ADV are product modules: they are specified by noun phrases
that designate things, as in Figure 5.4. Work breakdown structures for software

D3, 01, 02, 03]

5.6

projects are pro

“M). The eleme
odules.
. The top level

= ecessary to sati

Vverification and

speed, can
ments); an

Satisfying criter
balanced agains

2,4 to 8, and 3.

1.1 Initiate

1.1.1

1.1.3
1.1.4
{.1.5

1.2.1
1.2.2
123
1.2.4
Closeo
1.3.1
1.3.2
1.3.3
1.3.4

DEVELOPING THE ARCHITECTURE DECOMPOSITION VIEW 181

cess-oriented, hierarchical decompositions of work activities and

sks. The elements of a WBS are specified by verb phrases that indicate actions to
o taken, as in Figures 5.4a and 5.4b (e.¢g., manage project, develop software, perform

nts of an ADV are related to the elements in a WBS by embedding

within the WBS the work needed to develop or otherwise obtain the software

of your WBS should include all of the major work activities within

e scope of your project; that is, the top level should encompass all work activities

sfy the requirements, constraints, and contractual commitments for

our project (c.g., project management, system analysis, soltwarc development,

validation, and product delivery). Each node of the WBS in your

initial project plan should be decomposed into sublevels until cach of the following
WBS decomposition criteria are satisfied:

1. hidden complexitics are exposed (i.c., the job to be donc is understood);

2. opportunitics for reuse of existing software components can be identified;

3. the nccessary hardware resources, such as computer memory and processor

be specified (which may result in revision of the hardware require-
d

4. estimates of effort necded to develop the software can be made.

ion 1 is necessary in order to satisfy criterion 2; this may not be

possible without prototyping, fcasibility studies, and revision of the requirements.
Also the estimated effort to find, assess, and modify modules to be reused must be

t the effort required to develop new modules. It is much better to

confront these issues carly in your project rather than later.
The WBS depicted in Figures 5.5¢ and 5.5b is partially decomposed. Elements 1,

1. 3.3, and 3.4 should be expanded as necessary to satisfy the WBS

decomposition criteria. For example, decomposition of element 1, Manage Project,
might be as follows:

1 Manage Project

project
Identity stakeholders

1.1.2 Develop/clarily requirements
Prepare initial estimates

Prepare initial project plan

Obtain commitment to the plan
Conduct project

Measure and control project
Lcad and direct personnel
Commuanicate and coordinate
Manage risk

ut project

Obtain product acceptance
Conduct postmortem sessions
Prepare and distribute lessons-learned report
Assist in reassigning project personnel

182 PROJECT PLANNING TECHNIQUES

During planning the various paths in your WBS may be decomposed to differen,
levels in order to satisfy the WBS decomposition criteria. Familiar work of Loy
complexity will require less decomposition to permit confident estimates than 4 New
kind of work of uncertain complexity. An identified opportunity for reuse of an
existing module will require less decomposition if you are confident the candida,
module will be suitable, and more decomposition to assess its suitability if You are
less confident in it. The elements of a WBS are typically decomposed to three g
four levels during planning; one or two additional levels are typically added dur

ing
execution of the project.)

5.7 GUIDELINES FOR DESIGNING WORK
BREAKDOWN STRUCTURES

The work breakdown structure (WBS) is a fundamental tool for planning a software
project and for measuring and controlling the progress of a project; it integrates (he
managerial and technical activitics of a software project. A well-designed WBS i
thus an essential clement of a software project management plan. Fifteen guidelines
for designing work breakdown structures are itemized in Table 5.2 and discusseq
below. Additional guidelines for using the WBS to track the progress of your project
arc presented in Chapter 11, As indicated by these guidelines, your WBS should he
designed and structured with the same care used to design the architectural views
of the software system or product.

TABLE 5.2 Fifteen guidelines for designing work breakdown structures

Guideline Work Breakdown

I Usce the Architecture Decomposition View (ADV) of the software architecture as (he
basis for developing the WBS.

2o Structure the ADV and the WBS to facilitate work assignments.

3 Develop and use process-oriented work breakdown structures.

4: Embcd the work activitics to develop and modity product modules in the WBS,
5: Partition the scope of the project into not more than 7 or 8 functional arcas at the

top level of the WBS.
6: Limit the fan-out of each element (i.e., the scope of cach clement) in the WBS (o
seven or less.
7. Limit the maximum depth of the WBS to six or fewer levels,
8 Usc a decimal numbering system to systematically identify work activities and
tasks. .
9: Allocate prioritized requirements to development activities and tasks in the WBS.
10: Design the WBS top-down, bottom-up, and middle out.
11: Use work packages to specify project tasks.
12: Analyze work packages for desired properties.
[3: Derive the schedule network from the work packages.
14: Determine resource requirements using the work packages and the schedule
network.
15: Revise and elaborate the WBS periodically and as events dictate.

5.7 GUIDELINES FOR DESIGNING WORK BREAKDOWN STRUCTURES 183

BS Design Guideline 1: Use the decomposition view of the software architecture
DV) as a basts for developing the WBS — As illustrated in Figure 5.4, the elements
an ADV are denoted by noun phrases; they are things. The work to develop the
ments of an ADV is embedded in the WBS by adding appropriate verbs to the
un phrases in the ADV.

decomposed to differay
a. Familiar work of g
lent estimates than a 3
ortunity for reuse of:
: confident the candj
s its suitability if you:
decomposed to thre
e typically added dy

W.pS Design Guideline 2: Structure the ADV to facilitate work assignments The
composition view of the software architecture embedded in the WBS should
ovide opportunities for concurrent work activities. For example, the hardware
ver, financial transaction, diagnostics, and communication modules in Figure
[can be developed or otherwise obtained by diffcrent tcams working concur-
ﬂy; the COMM package can also be procurcd concurrently. Similarly the valida-
- processor, recorder, and terminator modules of the financial transaction
dule can be developed by individuals or teams working concurrently on the
fodules.

project; it integ’«rétg :
A well-designed W] BS Design Guideline 3: Develop and use process-oriented work breakdown struc-
es Asillustrated in Figures 5.5a and 5.5h, a WBS specifies work activities, tasks,
d the containment relationships among them. Each activity and task is specified
verb phrase that indicates actions to be taken.

WBS Design Guideline 4: Embed the work activities to develop and modify
duct modules in the WBS The activitics and tasks to develop or otherwise
ain the modules in the decomposition view of the software architecture in
fioiire 5.4 arc embedded in the WBS of Figures 5.54 and 5.5h by converting the
n phrases in Figure 5.4 to the corresponding verb phrases in Figures 5.5q4
:5.5h.

S Design Guideline 5: Partition the scope of the project into not more than seven
eight functional areas at the top level of the WBS — The top level of a WBS should
tition all the work activities to be accomplished into seven or cight clements, as
Stratccl in Figures 5.5¢ and 5.5b. Limiting the number of activities to seven or
ht elements at the top level facilitates management of the intellectual complexity
a project by partitioning it into a small number of work activities to be directly
naged by you, the project manager, and by those who report directly to you.
ordinate activitics and tasks are assigned to team leaders and team members
10 are responsible for those activities and tasks.

S Design Guideline 6: Limit the fan-out of each element in the WBS to seven or
gnt The fan-out of a WBS element is the number of branches connecting an
ment to its immediate subordinate elements. As described above, one role of a
S is to designate roles, responsibilities, and authorities in a software project.
iting fan-out has the advantage of controlling the complexity of each work activ-
:by limiting the number of subordinate activities or tasks that must be managed
accomplish that work activity; intellectual manageability of a project is thus
amed. This advantage is not dissimilar to the advantage gained by limiting the
out of product modules in the architecture decomposition view of software
itecture.

184 PROJECT PLANNING TECHNIQUES

WBS Design Guideline 7 Limir the depth of the WBS 10 SIX OF fewey level, .
depth of a WBS s the length of the longest path(s) in the WBS: in Figureg s
5.5b the depth js 4. which is indicated by the number of digits in the lowe
task designators. Limiting the depth of each path in a WBS (0 siy or fewe
has similar advantages to limiting fan-out in controlling intellectyy] ma“ageabim
of a project. Decomposing a path more than six levels to satisfy the WRS decomy
position criterig of exposing complexity and rigk factors indicates areas of
product and/or process architecture that mugt be studied in greater deryj)
reconfigured as appropriate.

Consider a software project that has 10 developers working for 2 months (o
staff-weeks). If each development task represents one stalf-weck of elfort there
would be 480 leaf nodes in the software development sub-ree of the WBS, Assum,.
ing software development (design, code, test) is 50% of the totg] effort, ang assu,.
ing all project tasks are decomposed to 4 level of one staff-week, the WRBS Woul(
have 960 1car nodes. In contrast, a WBS that has 6 levels with o lan-out of 7 at each
node (a 6 x 7 WBS) would have 7¢ leaf node tasks (117,659). Clearly, a 6 x 7 WRS
is sufficient for the largest mcga-projects,

Another design consideration: if a node in your WBS has, say. 3 or 4 sub-levelg
with fan-outs of 5 or ¢ at each node, this may indicate the need to USPIN Off (yy
sesment of the WBS ingo 5 SCparate subproject (a 3 x 6 WBS has 216 ear node
tasks).

.5(? ang
St lCVOI
r]CVCIS

the
dang

wns Design Guideline 8: Use a decimalt numbering system 1o Specify work acq Viliey
and tasks in the WBS The numbering system lustrated in Figures 554 ang 5.5h
provides a systematic way of specifying the containment and sibling relationships
among activitics and tasks, Task 3243, in Figures 5.5¢ and 5.5b, for example, is op
level 4 of the WBS because there are 4 digits in its identifier; it is (he 3th clemeny
of the 4th element of the 2nd element of the 3rd element in the WBS. Al clements
having a 2 in the 2nd position are sibling software work activitics (e.g.. the Build
FINAT activities in Figures 5.54 and 5.5b). Some organizations specily the numbers
to be used in designating the top elements in work breakdown structures. For
¢xample, every work element in every WBS that starts with a 3 would designate
software work. and clements of work starting with a 6 would denote configuration
management. This convention facilitates uniform reporting and accounting practices
among projects across an organization.

WBS Design Guideline 9- 4 llocate prioritized requirements o development acii vitics
and tasks in the WS Each activity and task in 4 WBS indicates work that must
be accomplished ang work products that must be produced. Allocating require-
ments to development activities and tasks, as Hlustrated in Figures 5.54 and 5.5b,
provides prioritized specifications for the work products to be produced by those
activities and tasks. In addition to specifying the features to be provided, the allo-
cated requirements should specity design constraints, capacities. performance. inter-
faces, and quality attributes, ag appropriate.

Product features should be uniquely allocated to tasks so that work assignments
for building the modules are clearly defined. Other requirements (design con-
straints, capacities, performance, interfaces, and quality attributes) may apply to
multiple modules, perhaps including the entire system or product, as discussed i

5.7 GUIDELINES FOR DESIGNING WORK BREAKDOWN STRUCTURES 185

Chapter 3. Those requirements should be allocated to the highest level activity to
which they apply and be “flowed down™ to the descendents of that activity.

BS Design Guideline 10: Design the WBS top down, bottom up, and middle out
Designing a WBS is best donc iteratively by interleaving top-down, bottom-up, and
middle-out strategies. In this regard the cognitive processes involved when develop-
ing a WBS (i.c.. designing a software project) are not unlike those observed in
esigners of software [Walz93].

Top-down development of a WBS proceeds by partitioning the scope of the
project into a set of top-level activities and successively decomposing activities until
a set of tasks is specificd that satisly the WBS decomposition criteria listed above.,
ottom-up development of a WBS proceeds by identifying a set of tasks that must
be performed and grouping related tasks into activities. Middle-out devclopment of
WRBS proceeds by identifying a mid-level activity that must be performed, decom-
nosing it into tasks and/or subordinate activities, grouping it with similar activities,
B and connecting the related set of activities to a higher level activity.

chk, the WBS would:
a lan-out of 7 at eag]
Clearly, a 6 x7 W

say, 3 or 4 sub-l‘ey,
2ed to “spin off’yith
3S has 216 leaf+ng

WBS Design Guideline 11: Use work packages to specifv development tasks Work
packages are specifications for the activitics and tasks in a WBS. Tasks are the lowest
evel elements in the WBS. Work packages for activities are aggregations of work
vackages [or subordinate activities and tasks.

3 - Yl RIS ‘v) ~) a1 :
pecify work g A work package should contain

‘igures 5.5¢ and

the corresponding WBS number and name,

a briel description of the task,

estimated duration,

resources needed,

predecessor and successor tasks,

work products to be produced,

work products that will be placed under version control (basclined),

risk factors (i.e., potential problems that might interfere with successful comple-
tion of the work package), and

objective acceptance criteria for the work products generated by the task.

A template for work packages is illustrated in Table 5.3a; an example is provided
n Table 5.3b.

BS Design Guideline 12: Analyze work packages for desired properties The
ttributes of work packages, and collections of work packages, can be analyzed to
letermine various project factors. For example, the estimated cost of personnel to
Xecute a work package can be determined from the numbers and kinds of people
Pecified and the estimated duration of the task. In Table 5.3, the cost of personnel
S the loaded salaries (i.e., pay plus overhead) for 10 staff-weeks of senior designer
ffort. The cost of other resources can be similarly determined: the workstation and
Oftware tools in Table 5.3b may be available at no cost, or a cost to be borne by
§ task, or the cost may be amortized across this task and other tasks that will use

186 PROJECT PLANNING TECHNIQUES

TABLE 5.3A Template for work packages

Task identifier: «WBS number and name»
Task description: «brief description»
Estimated duration: «days or weeks»
Resources needed:

Personnel: «numbers of people needed to compicte this task»

Skills: «personnel skills needed to complete this task»

Tools: «software and hardware needed»

Travel: «to where? for how long?»

Other: «other resources needed 1o complete this task»
Predecessor tasks: «to be completed before this task can begin»
Successor tasks: «to start after this task is completed»

Work products: «outputs of this task»

Baselines: «work products to be placed under version control»
Risk factors: «polential problems for this task»

Acceptance criteria: «for the work products of this task»

TABLE 5.3B A work package example

Task identifier: 3.2.2.1 Design transaclion processor
Task description: Specily internal architecture of the transaction processor module
Estimated duration: 2 weeks
Resources needed:
Personnel: 2 senior telecom designers
Skills: Designers must know UML
Tools: One workstation running Rapsody
Travel: Three day design review in San Dicgo for 2 people
Predecessor tasks: 3.2.1 Develop system architecture
Successor tasks: 3.3.2.2 Implement transaction processor
Work products: Architectural specification for transaction processor and test plan
Basclines created: Architectural specification for transaction processor and text plan
Risk lactors: Designers not identificd
Acceptance criteria: Successful design inspection by peers and approval of transaction

processor design by the soltware architect

those resources; the cost of travel can be determined and included in the cost of
executing the work package (in Table 5.3b, two round trips to San Diego and 3 days
travel support for 2 people).

The estimated costs for a collection of work packages can be aggregated (i.e.
rolled up) to determine the elements of cost for various kinds of activities and
to determine the overall cost estimate for the parent activity. Estimated costs of
development tasks and activities can be rolled up to provide an estimated cost for
software development, which can be used as a basis of estimation for the entire
project. For example, a project would be estimated to cost $100,000 USD if software
development was estimated to cost $30,000 USD and was estimated to be 50% of

5.7 GUIDELINES FOR DESIGNING WORK BREAKDOWN STRUCTURES 187

“overall project cost (50% perhaps determined from historical data within the
Organization).

. If the roll-up of costs results in an estimate that exceeds the constraint on the
roject budget. you can start at the top level and reallocate portions of the budget
o activities and tasks in a top-down manner so that the allocations to the subordi-
ate elements of cach activity do not exceed the amount allocated to that activity.
his may involve eliminating or simplitying some product requirements and/or
ncurring greater levels of risk.

‘e this task»
1S task»

S Lasko BS Design Guideline 13: Derive the schedule network from the work packages A
e chedule network for a sct of tasks can be constructed from the durations, predeces-
rs, and successors of the work packages for those tasks, as explained in the fol-
dwing section of this chapter. Constructing the schedule network may rcveal

discontinuitics, circularities, and other inconsistencics among predecessor and suc-

1on controly

ssor tasks that can be resolved by iterative refinement of the work package
- specifications.

BS Design Guideline 14: Determine resource requirements using the work packages
ind the schedule nenwork Knowing the time in the schedule when various tasks
¢ planned to oceur permits determination of the dates when various kinds of
fesources will be needed and the durations for which they will be required;
r example, the need date for the unidentified senior designers in Figure 5.5h can
“determined from the development schedule. If the need date is three months
nce, there is adequate time to acquire the designers; if the need date is next week.
u arc probably in big trouble because failure to complete the work package on
hedule will delay subscquent tasks and might delay completion of the project.
source profiles for the various kinds of resources needed can be produced by
mming up the resource requirements across the schedule, as llustrated later in
Ehis chapter.

/B Design Guideline 15: Revise and elaborate the WBS periodically and as events
ctate. The clements of the initial WBS are decomposed to levels that satisfy the
BS decomposition criteria. As the project evolves, understanding grows and cir-
mstances change; increased detail can be added to facilitate work assignments 1o
ividuals and teams. Additional work clements may be identified and others
ised. The WBS should be updated each month in a rolling-wave manner. Also
vents such as major changes to requirements, schedule, and resources must be
flected in a revised WBS. The WBS must be placed under version control to clearly
entify the current version and to provide a historical record of the evolution of
e WBS.

An alternative approach is to interchange the order of guidelines 11, 12, 13, and
by first developing the schedule network and resource estimates for each task in
schedule network (guidelines 13 and 14) and then using the schedule network
resource estimates to specify and analyze the work packages (guidelines 11 and
In any case, as will be shown in Chapter 8, work package specifications for the
S elements are essential for allocating the work to development teams and
king the progress of their work.

- 15 16

hot

3.3.2

12

5.12 KEY POINTS OF CHAPTER 5 201

512 KEY POINTS OF CHAPTER 5

Project plans must be consistent with product requirements; you cannot prepare
a plan for developing a software product if you don’t know what product to

make.

The more you understand about the product to be made. the morc confident
you will be in the details of your plan.

. A project plan must be updated periodically and as events dictate using a
rolling-wave approach.

Your initial plan and subsequent plans must maintain a balance among require-
ments, schedule, budget, and resource availability.

Essential elements of a project plan include a WBS, an activity network, resource
profiles for the various Kinds or resources, and strategies for dealing with identi-

fied risk factors.
. The work breakdown structure (WBS) is a fundamental tool for planning,
tracking, and controlling a software project.
The architecture decomposition view (ADV) of the software architecture pro-
vides the basis for developing a WBS.
. The ADV is product-oricnted; noun phrases arc used to specily things.
. The WBS is process-oriented; verb phrases are used to specify activities and
tasks.
- Using the guidelines for designing a WBS will ensure that the WBS is designed
with the same carc that is used Lo design the product.
Your initial WBS should be decomposed to satisty the WBS decomposition
criteria.
- Work packages arc the specifications for tasks and activitics in thc WBS.

- Work packages [or activitics are aggregations of work packages for subordinate
tasks and activities.

. The schedule network, resource requirements, cost estimates, and risk factors

can be derived from work packages.

The critical path method (CPM) can be used to determine the minimum esti-

mated duration of a project and the slack (imes associated with noncritical

-

tasks.

- The Program Evaluation and Review Technique (PERT) can be used to deter-
mine the times, at various levels of probability, required to reach project mile-
stones. including the final milestone.

. A task-Gantt chart can be used to depict the eritical path, illustrate slack times
for noncritical tasks, and determine resource profiles for the various kinds of
resources.

. A resource-Gantt chart can be used to depict the resource loading for various
resources.

- Acceptable options for reconciling schedule/resource conflicts include recon-
figuring the schedule network, extending the schedule so that fewer resources
are needed in peak weeks. adding more resources to maintain the schedule,
using more productive resources so that fewer numbers are needed, descoping

202

PROJECT PLANNING TECHNIQUES

the requirements so that fewer resources and less time are needed, and com-
binations of the above.

Unacceptable options tor reconciling schedule/resource conflicts include pro-
ducing an unrcalistic plan that has no chance of being successfully imple-
mented; planning for overtime; and reducing or eliminating quality control
tasks such as inspections, reviews, and testing.

Resource profiles can be used to calculate effort and the costs of the various
resources; project schedule can be determined from the critical path or from
PERT calculations.

SEL ISO, [EEE, and PMI provide frameworks, standards, and guidelines for
project planning techniques (see Appendix SA to this chapter).

REFERENCES

[Bass03] Bass, L., P. Clements. and R. Kazman. Software Architectivre in Practice. 2nd ed.

Addison Wesley, 2003.

[CMMI06] SEL CMMI" Models and Modules. hitp//www.sci.cmu.edu/cmmi/models/,

2006.

[Conway68] Conway, M. E. *How Do Committees Invent?” Datamation (April 1968). Vol

14, No. 4, pp. 28-31.

[IEEE1038] [TELEE Std 1038™-1998. [FFEL Standard for Software Project Management

Plans. Engincering Standards Collection. 1EEE Product: SET13. Institute of
Electrical and Electronic Engincers, August 2003,

[TEEE12207] IEEE/EIA 12207.0/.1/.2. Industry Implementation of International Standard

ISO/AEC 12207:1995 Standard for Information Technology=Software Life Cycle
Processes. Enginceering Standards Collection; IEEE Product: SET13. Institute
of Electrical and Electronic Engincers, August 2003,

PMI104 PMI. A Guide to the Project Management Body of Knowledge, 3rd cd.
] : y o :

(PMBOK™ Guide). Project Management Institute, 2004,

[Walz93] Walz, D. B., J. Elam, and B. Curtis. Inside a software design team: Knowledge

acquisition, sharing, and integration. Communications ol the ACM, 36 (October
1993). pp. 63-67.

EXERCISES

5.1. List and briefly explain three factors that might prevent you. as the project

manager, from preparing a project estimate that has a 90% or greater proba-
bility of success.

5.2. The assumptions on which your cstimate and your commitment are based

must be documented and accepted by your manager and your customer. List
and briefly cxplain five (relevant and reasonable) assumptions you might
make in preparing an estimate that would be accepted.

5.3. The architecture decomposition view depicts the hicrarchical “is-part-of” con-

tainment relationship among software modules. List and briefly explain the
desirable attributes of software modules in an ADV.

