SHAPE NAMES

Three-Dimensional Figures or Space Figures

Two-Dimensional Figures or Plane Figures

Square
\square

Rectangle

Name each shape.

1.

2.

3.

4.

5.

SHAPE NAMES

Three-Dimensional Figures

Polygons

triangle

rectangle

square

pentagon

hexagon

octagon

Name each figure.

1.

2.

3.

4.

5.

6.

7.

8.

CHALLENGE

A polygon with four sides is called a quadrilateral. Draw a quadrilateral that is not a rectangle. Then draw another quadrilateral that is not a parallelogram and not a trapezoid.

SHAPE NAMES

Polygons

Triangle Quadrilateral

Special Quadrilaterals

Trapezoid	Parallelogram	Rectangle	Rhombus	Square
Only two parallel sides.	Opposite sides are parallel and the same length.	Parallelogram with 4 right angles.	Parallelogram with all sides the same length.	Rectangle with all sides the same length.

Name each polygon.
1.

2.

3.

4.

Classify each quadrilateral. Some may have more than one name.
5.

6.

7.

PROPERTIES OF GEOMETRIC FIGURES

Angles

Right Angle
A right angle forms a square corner.
$\stackrel{\square}{\square}$
The square in the corner means the angle is a right angle.

Acute Angle
An acute angle is less than a right angle.

Obtuse Angle An obtuse angle is greater than a right angle.

Tell whether each angle is right, acute, or obtuse.
1.

2.

3.

4.

Tell whether the angle each arrow points to is right, acute, or obtuse.
5.

6.

CHALLENGE

Draw a triangle with an obtuse angle.

PROPERTIES OF GEOMETRIC FIGURES

Angles

Right Angle
A right angle forms a square corner.

Acute Angle
An acute angle is less than a right angle.

Obtuse Angle
An obtuse angle is greater than a right angle.

An angle can be named in three ways.

$\angle B$ or $\angle A B C$ or $\angle C B A$
Read: angle B or angle $A B C$ or angle $C B A$
Two rays meet at an endpoint to form an angle.
The endpoint is always included in the angle name.
Tell whether each angle is right, acute, or obtuse.
1.

2.

3.

4.

For each figure, tell whether $\angle A B C$ is right, acute, or obtuse.

5.

6.

7.

8.

CHALLENGE

Classify each of the angles of the parallelogram.

PROPERTIES OF GEOMETRIC FIGURES

An angle is formed when two rays meet at the same endpoint, or vertex. The angle can be named by three letters or by its vertex:

$\angle B$ or $\angle A B C$ or $\angle C B A$

Angles are measured in degrees $\left({ }^{\circ}\right)$.

Right Angle A right angle measures 90°.

Acute Angle An acute angle is greater than 0° and less than 90°.

Obtuse Angle

 An obtuse angle is greater than 90° and less than 180°.

Straight Angle A straight angle measures 180°.

Use the figure below. Tell whether each angle is right, acute, obtuse, or straight.

Use the figure below. Name as many examples of each type of angle as possible.

5. acute
7. right
\qquad

1. $\angle D C G$
2. $\angle C D E$
3. $\angle C D G$
4. obtuse
5. straight

ALTERING SHAPES

Shapes can be combined to make different shapes.

Joining two squares makes a rectangle:

Shapes can be divided to make different shapes.
Dividing a rectangle along the diagonal makes two triangles:

Name the shapes used to make each figure.

1.

3.

5.

2.

4.

6.

CHALLENGE

Make a new shape by combining at least 3 different geometric shapes.

ALTERING SHAPES

Polygons can be combined to make different polygons.

Joining a square and two triangles makes a trapezoid:

Polygons can be divided to make different polygons.

Dividing a parallelogram along the diagonal makes two triangles:

Name the polygons used to make each figure.
Then identify the figure.
1.

2.

3.

4.

5.

CHALLENGE

Make a new shape by combining at least 3 different polygons.

ALTERING SHAPES

Polygons can be combined to make different polygons.

Joining two parallelograms can make a hexagon:

Polygons can be divided to make different polygons.

A hexagon can be divided into two trapezoids:

Name the polygons used to make each figure. Then identify the figure.

1.

2.

3.

4.

5.

6.

CHALLENGE

Make a pentagon
by joining together
4 triangles.
Make a hexagon
by joining together
6 triangles.

CONGRUENT AND SIMILAR SHAPES

Congruent Figures

These rectangles are congruent. Congruent figures have the same shape and the same size.

Similar Figures

These rectangles are similar.
Similar figures have the same shape but not the same size.

Are the figures congruent, similar, or neither?

1.

2.

3.

4.

5.

6.

7.

8.

CONGRUENT AND SIMILAR SHAPES

Congruent Figures

Congruent figures have the same shape and the same size.

The rectangles are congruent.

Similar Figures

Similar figures have the same shape but not the same size.

The rectangles are similar.

Are the figures congruent, similar, or neither?
1.

2.

3.

4.

5.

6.

CHALLENGE

Danny takes a photograph of his house. Then he has the photograph enlarged. Is the house in the enlargement congruent to the house in the original photograph? Is it similar? Explain.

Are the figures congruent, similar, neither, or both?
1.

2.

3.

4.

Similar figures have the same shape but not the same size.

The triangles are similar. The corresponding angles of the triangles are equal. The ratios of corresponding sides are equal.

Congruent Figures

Congruent figures have the same shape and the same size.

The triangles are congruent. Since they are the same shape, the triangles are also similar. The ratios of corresponding sides of the triangles is $1: 1$.

- $1: 1$.

MOTION GEOMETRY

Translation
A translation slides a figure along a straight line left, right, up, or down.

Reflection

A reflection flips a figure across a line.
A reflection makes a mirror image.

Rotation

A rotation turns a figure around a point.

Write translation, reflection, or rotation to describe how each figure was moved.
1.

2.

4.

3.

CHALLENGE

Is the reflection of a figure congruent to the original figure? Explain.

Translation

A translation slides a figure along a straight line left, right, up, or down.

Reflection
A reflection flips a figure across a line. A reflection makes a mirror image.

Rotation
A rotation is a turn that moves a figure around a point.

Write translation, reflection, or rotation to describe how each figure was moved.
1.

2.

4.

6.

5.

CHALLENGE

Translations, reflections, and rotations are transformations of a figure.
Do these transformations result in a figure congruent to the original figure? Explain.

A transformation moves a figure without changing its size or shape.

Transformations

Translation

A translation moves a figure along a straight line.

Reflection
A reflection flips a figure across a line. A reflection makes a mirror image.

Rotation
A rotation moves a figure by turning it around a point. All the points on the figure move in a circle.
Some points move farther than others, depending on how far from the center of rotation they are.

Write translation, reflection, or rotation to describe how each figure was moved.
rotation of the triangle shown on the grid. Label each transformation.
1.

3.

4.

CHALLENGE

Draw a translation, reflection, and
2.

Lines, line segments, and rays are straight paths.

Special Types of Lines

Intersecting
Intersecting lines are lines that cross at one point.

Perpendicular

Perpendicular lines cross at right angles.

Parallel

Parallel lines are lines in one plane that never cross.

2.

3.

4.

CHALLENGE

Which statement is always true? Explain.
(a) Intersecting lines are always perpendicular.
(b) Perpendicular lines always intersect.

LINES AND ANGLES

Lines, line segments, and rays are straight paths.

Line

A line is a straight path that goes on without end in two directions.

line $A B$

Intersecting Lines

 Intersecting lines are lines that cross at one point.
line $A B$ and line $C D$ intersect at point E

Line Segment

A line segment is a part of a line. It has two endpoints.

Perpendicular Lines

Perpendicular lines intersect at right angles. \hat{S}_{E}
line EF is perpendicular to line GH

Ray

A ray is a part of a line. It has one endpoint and goes on without end in one direction.

ray JK

Parallel Lines

Parallel lines are lines in one plane that never intersect.

line $M N$ is parallel to line QR

Name each figure.
2.

\qquad
1.

CHALLENGE

Draw and label a diagram to illustrate each of the following:
line $G H$ parallel to line $L M$
line $R S$ and line $X Z$ intersecting at point P

Line

A line is a straight path that goes on without end in two directions.

line $A B$ or $\overleftrightarrow{A B}$ or line $B A$ or $\widehat{B A}$

Intersecting Lines

 Intersecting lines are lines that cross at one point.
$\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at point E

Line Segment

A line segment is a part of a line. It has two endpoints.

line segment $C D$ or $\overline{C D}$ or line segment $D C$ or $\overline{D C}$

Perpendicular Lines

Perpendicular lines intersect at right angles.
$\overrightarrow{E F} \perp \overrightarrow{G H}$ \perp means "is perpendicular to"

Ray

A ray is a part of a line. It has one endpoint and goes on without end in one direction.

ray $J K$ or $\overrightarrow{J K}$

Parallel Lines

Parallel lines are lines in one plane that never intersect.

$\overrightarrow{M N} \| \overrightarrow{Q R}$
| | means "is parallel to"

Use the figure at the right to name an example of each term.

1. perpendicular lines \qquad
2. ray \qquad
3. line segment \qquad
4. intersecting lines \qquad
5. parallel lines \qquad

6. line \qquad

Draw and label a figure for each.

7. line FG
8. $\stackrel{P Q}{P Q}|\mid \overleftrightarrow{S T}$
9. $\overline{\mathrm{RS}} \perp \overline{\mathrm{MN}}$

A map is a diagram that shows relationships among places, often including distance information.
This map shows some places near Bev's house.
The map shows that Bev lives 4 miles from her school.

Use the map above to answer each question.

1. How many miles is Bev's house from the library? \qquad
2. How many miles does Karl live from the mall? \qquad
3. Who lives closer to school, Bev or Karl? How much closer?
4. Bev goes from her house, to the library, and then to the post office. At that point, how far did she travel? \qquad
5. How many miles is a round trip from Karl's house to school and back?
\qquad
6. Who lives closer to the library, Bev or Karl? Explain.

CHALLENGE

What is the shortest route to the school from the library shown on the map? What is the distance?

MAP AND DRAWING SCALES

A map is a diagram that shows distances between different locations.
The map below shows some trails in a forest.
It is 1 mile between each pair of circle markers shown on the map.
So, it is 6 miles from the trailhead to the top of the Trail A.

Use the map above to answer each question.

1. How far is it from the trailhead to the top of Trail B? \qquad
2. How far is it from the trailhead to the top of Trail C? \qquad
3. Trail D connects Trails B and C. How long is Trail D? \qquad
4. Start at the trailhead and start to follow Trail B. Then go along Trail D to the top of Trail C. How far is it to the top? \qquad
5. What is the total roundtrip distance from the trailhead to the top of Trail A and back? \qquad
6. What is the shortest total distance of a hike that starts at Trail C, turns onto Trail D and then follows Trail B to the trailhead of Trail B?
\qquad
7. How much longer is a roundtrip hike from the trailhead to the top of Trail C than a roundtrip hike to the top of Trail A? \qquad

CHALLENGE

Suppose the distance between each pair of markers on the map were 5 miles. How far would it be to the top of Trail A? Explain.

A scale drawing is a drawing that shows a real object enlarged or reduced. The scale is a ratio that compares the size of the object in the drawing to the size of the actual object.

The map shows the location of 7 different sites an archaeologist is mapping.

What is the actual distance between Site A and Site B ?
The map uses the scale 1 inch $=12$ miles.
Use a ruler to measure the distance from Site A to Site B on the map.
The distance on the map is $2 \frac{1}{2}$ or 2.5 inches
Find an equivalent ratio to find the actual distance.
actual distance

map scale distance $\longrightarrow \frac{12 \mathrm{mi}}{1 \text { in. }}=\frac{?}{2.5}$ actual distance

Think: $2.5 \times 12=30 \quad \frac{12 \mathrm{mi}}{1 \mathrm{in} .}=\frac{30 \mathrm{mi}}{2.5 \mathrm{mi}}$
The actual distance between the sites is 30 miles.

Use the above map and map scale to find each distance.

1. What is the actual distance between Site B and Site C ? \qquad
2. What is the actual distance between Site C and Site D ? \qquad
3. What is the actual distance between Site D and Site E ? \qquad
4. What is the actual distance between Site E and Site F? \qquad
5. What is the actual distance between Site F and Site G ? \qquad

SHAPE NAMES

Three-Dimensional Figures or Space Figures

Two-Dimensional Figures or Plane Figures

Square	Rectangle	Triangle	Circle

Name each shape.

1.

[triangle]
5.

[rectangular prism]
2.

[cone]
6.

[circle]
3.

7.

[cylinder]
4.

[sphere]
8.

[rectangle]
9. Which figures in the exercises are plane figures? \qquad $[1,3,6,8]$
10. Which figures in the exercises are space figures? \qquad [2, 4, 5, 7]

CHALLENGE

Name a real-life example of a rectangular prism, a cylinder, a cone, and a sphere.
[Answers may vary. Possible answers: rectangular prism: cereal box;

SHAPE NAMES

Three-Dimensional Figures

triangle

Polygons

rectangle

square

pentagon

hexagon

octagon

Name each figure.

5.

[rectangle]
2.

[cylinder]
6.

[sphere]
3.

[pentagon]
7.

[hexagon]
4.

[triangle]
8.

[cone]

CHALLENGE

A polygon with four sides is called a quadrilateral. Draw a quadrilateral that is not a rectangle. Then draw another quadrilateral that is not a parallelogram and not a trapezoid. [Check students' drawings.]

SHAPE NAMES

Polygons

Triangle Quadrilateral Pentagon

Special Quadrilaterals

| Trapezoid | Parallelogram | Rectangle | Rhombus |
| :---: | :---: | :---: | :---: | :---: |

Name each polygon.
1.

[pentagon]
2.

[octagon]
3.

4.

[hexagon]
Classify each quadrilateral. Some may have more than one name.
5.

[parallelogram, rhombus]
6.

[trapezoid]
7.

[parallelogram, rectangle, rhombus, square]

PROPERTIES OF GEOMETRIC FIGURES

Angles

Right Angle
A right angle forms a square corner.
$\stackrel{\square}{\square}$
The square in the corner means the angle is a right angle.

Acute Angle
An acute angle is less than a right angle.

Obtuse Angle An obtuse angle is greater than a right angle.

Tell whether each angle is right, acute, or obtuse.
1.

[acute]
2.

[right]
3.

[obtuse]
4.

[acute]

Tell whether the angle each arrow points to is right, acute, or obtuse.
5. [acute]

6.
[right]

CHALLENGE

Draw a triangle with an obtuse angle. [Check students' drawings.]

PROPERTIES OF GEOMETRIC FIGURES

Angles

Right Angle
A right angle forms a square corner.

Acute Angle
An acute angle is less than a right angle.

Obtuse Angle
An obtuse angle is greater than a right angle.

An angle can be named in three ways.

$\angle B$ or $\angle A B C$ or $\angle C B A$
Read: angle B or angle $A B C$ or angle $C B A$
Two rays meet at an endpoint to form an angle.
The endpoint is always included in the angle name.
Tell whether each angle is right, acute, or obtuse.
1.

[acute]
2.

3.

[obtuse]
4.
 [acute]

For each figure, tell whether $\angle A B C$ is right, acute, or obtuse.
5.

6.

7.

8.

[obtuse]

CHALLENGE

Classify each of the angles of the parallelogram.

PROPERTIES OF GEOMETRIC FIGURES

An angle is formed when two rays meet at the same endpoint, or vertex. The angle can be named by three letters or by its vertex:

$\angle B$ or $\angle A B C$ or $\angle C B A$

Angles are measured in degrees $\left({ }^{\circ}\right)$.

Right Angle A right angle measures 90°.

Acute Angle An acute angle is greater than 0° and less than 90°.

Obtuse Angle An obtuse angle is greater than 90° and less than 180°.

Straight Angle A straight angle measures 180°.

Use the figure below. Tell whether each angle is right, acute, obtuse, or straight.

Use the figure below. Name as many examples of each type of angle as possible.

1. $\angle D C G$
[right]
2. $\angle C D E$
[obtuse]
3. acute
[\angle QJK or $\angle K L S$]

$\frac{[\angle Q J K \text { or } \angle K L S]}{\text { 7. right }}$
$\frac{[\angle J Q R \text { or } \angle Q R K \text { or }}{\angle K R S \text { or } \angle R S L]}$

2. $\angle G D E$
[straight]
3. $\angle C D G$
[acute]
4. obtuse
[$\angle J K R$ or $\angle \mathrm{RKL}$]
5. straight
[$\angle \mathrm{QRS}$]

ALTERING SHAPES

Shapes can be combined to make different shapes.

Joining two squares makes a rectangle:
Shapes can be divided to make different shapes.
Dividing a rectangle along the diagonal makes two triangles:

Name the shapes used to make each figure.

1.

2.

[square and 2 triangles]

ALTERING SHAPES

Polygons can be combined to make different polygons.

Joining a square and two triangles makes a trapezoid:

Polygons can be divided to make different polygons.

Dividing a parallelogram along the diagonal makes two triangles:

Name the polygons used to make each figure.
Then identify the figure.
1.

[rectangle and 2 triangles; hexagon]
3.

[4 triangles; pentagon]
5.

[2 trapezoids; hexagon]
2.

[triangle and trapezoid; parallelogram]
4.

[2 parallelograms; hexagon]
6.

[trapezoid, 2 rectangles, 2 triangles; octagon]

CHALLENGE

Make a new shape by combining at least 3 different polygons.
[Check students' drawings.]

Polygons can be combined to make different polygons.

Joining two parallelograms can make a hexagon:

Polygons can be divided to make different polygons.

A hexagon can be divided into two trapezoids:

Name the polygons used to make each figure. Then identify the figure.

1.

[5 triangles; pentagon]
3.

[2 trapezoids and rectangle; octagon]
5.

[4 triangles; rhombus]
2.

[trapezoid and 2 triangles; trapezoid]
4.

[triangle and trapezoid; pentagon]
6.

[4 triangles; parallelogram]

CHALLENGE [Check students' drawings. Sample answers shown.]
Make a pentagon by joining together 4 triangles.

Make a hexagon by joining together 6 triangles.

CONGRUENT AND SIMILAR SHAPES

Congruent Figures

These rectangles are congruent. Congruent figures have the same shape and the same size.

Similar Figures

These rectangles are similar.
Similar figures have the same shape but not the same size.

Are the figures congruent, similar, or neither?
1.

[similar]
2.

3.
5.

7.

[congruent]

[neither]
8.

Discoverine MATH

CONGRUENT AND SIMILAR SHAPES

Congruent Figures

Congruent figures have the same shape and the same size.

The rectangles are congruent.

Similar Figures

Similar figures have the same shape but not the same size.

The rectangles are similar.

Are the figures congruent, similar, or neither?

1.

[congruent]
3.

[similar]
5.

2.

[similar]
4.

[congruent]
6.

[neither]

CHALLENGE

Danny takes a photograph of his house. Then he has the photograph enlarged. Is the house in the enlargement congruent to the house in the original photograph? Is it similar? Explain.
[lt is not congruent because the enlargement is larger than the original. It is similar since everything should be enlarged by the same ratio.]

CONGRUENT AND SIMILAR SHAPES

Similar Figures

Similar figures have the same shape but not the same size.

The triangles are similar.

The corresponding angles of the triangles are equal. The ratios of corresponding sides are equal.

Congruent Figures

Congruent figures have the same shape and the same size.

The triangles are congruent. Since they are the same shape, the triangles are also similar. The ratios of corresponding sides of the triangles is 1:1

Are the figures congruent, similar, neither, or both?
1.

[similar]
3.

[both]
2.

[neither]
4.

[neither]

CHALLENGE

Draw a rectangle on the grid.
Then draw a rectangle that is similar but not congruent to your rectangle. [Check students' drawings.]
Explain how you know the rectangles are similar.

[Answers may vary. Possible answer: I doubled both the length and the width of my original rectangle to draw the similar rectangle.]

Translation
A translation slides a figure along a straight line left, right, up, or down.

Reflection

A reflection flips a figure across a line.
A reflection makes a mirror image.

Rotation

A rotation turns a figure around a point.

Write translation, reflection, or rotation to describe how each figure was moved.
1.

[reflection]
2.

[translation]
4.

[rotation]

CHALLENGE

Is the reflection of a figure congruent to the original figure? Explain.
[Yes. The figure is still the same size and shape. Only its position has changed.]

Translation

A translation slides a figure along a straight line left, right, up, or down.

Reflection
A reflection flips a figure across a line. A reflection makes a mirror image.

Rotation A rotation is a turn that moves a figure around a point.

Write translation, reflection, or rotation to describe how each figure was moved.
1.

[translation]
3.

[reflection]
5.

[rotation]
2.

[rotation]
4.

[translation]
6.

[reflection]

CHALLENGE

Translations, reflections, and rotations are transformations of a figure.
Do these transformations result in a figure congruent to the original figure? Explain.
[Yes. For these transformations, the transformed figure is still the same size and shape.

A transformation moves a figure without changing its size or shape.

Transformations

Translation

A translation moves a figure along a straight line.

Reflection
A reflection flips a figure across a line. A reflection makes a mirror image.

Rotation
A rotation moves a figure by turning it around a point. All the points on the figure move in a circle.
Some points move farther than others, depending on how far from the center of rotation they are.

Write translation, reflection, or rotation to describe how each figure was moved.
1.

CHALLENGE

Draw a translation, reflection, and
2.

[reflection]
4.

[reflection] rotation of the triangle shown on the grid. Label each transformation.
[Check students' drawings.]

Lines, line segments, and rays are straight paths.

Special Types of Lines

Intersecting Intersecting lines are lines that cross at one point.

Perpendicular

Perpendicular lines cross at right angles.

Parallel

Parallel lines are lines in one plane that never cross.

2.

[perpendicular lines]
3.

[parallel lines]

[line segment]

CHALLENGE

Which statement is always true? Explain.
(a) Intersecting lines are always perpendicular.
(b) Perpendicular lines always intersect.
[(b) is always true because perpendicular lines intersect at right angles. Intersecting

LINES AND ANGLES

Lines, line segments, and rays are straight paths.

Line

A line is a straight path that goes on without end in two directions.

Intersecting Lines

 Intersecting lines are lines that cross at one point.
line $A B$ and line $C D$ intersect at point E

Line Segment

A line segment is a part of a line. It has two endpoints.

Perpendicular Lines

Perpendicular lines intersect

Ray

A ray is a part of a line. It has one endpoint and goes on without end in one direction.

ray JK

Parallel Lines

Parallel lines are lines in one plane that never intersect.

line $M N$ is parallel to line QR

Name each figure.
1.

[ray PQ]
2.
 [perpendicular lines $A B$ and $C D]$

CHALLENGE

Draw and label a diagram to illustrate each of the following: [Check students' drawings.] line $G H$ parallel to line $L M$

Line

A line is a straight path that goes on without end in two directions.

line $A B$ or $\overleftrightarrow{A B}$ or line $B A$ or $\widehat{B A}$

Intersecting Lines

 Intersecting lines are lines that cross at one point.
$\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at point E

Line Segment

A line segment is a part of a line. It has two endpoints.

line segment $C D$ or $\overline{C D}$ or line segment $D C$ or $\overline{D C}$

Perpendicular Lines

Perpendicular lines intersect at right angles.
$\overrightarrow{E F} \perp \overrightarrow{G H}$ \perp means "is perpendicular to"

Ray

A ray is a part of a line. It has one endpoint and goes on without end in one direction.

ray $J K$ or $\overrightarrow{J K}$

Parallel Lines

Parallel lines are lines in one plane that never intersect.

$\overleftrightarrow{M N} \| \overrightarrow{Q R}$
| | means "is parallel to"

Use the figure at the right to name an example of each term.

1. perpendicular lines \qquad $[\overrightarrow{A C} \perp \overrightarrow{B D}]$
[Sample answers given]
2. ray \qquad $[\overrightarrow{D E}]$
3. line segment \qquad [$\overline{\mathrm{BC}}$]
4. intersecting lines \qquad [$\overrightarrow{A C}$ and $\overrightarrow{C F}$]
5. parallel lines \qquad [$\overline{A C}|\mid \overrightarrow{D F}$]

6. line \qquad [CF]

Draw and label a figure for each. [Check student's drawings.]

7. line FG
8. $\stackrel{P Q}{P Q}|\mid \overleftrightarrow{S T}$
9. $\overline{\mathrm{RS}} \perp \overline{\mathrm{MN}}$

A map is a diagram that shows relationships among places, often including distance information.
This map shows some places near Bev's house.
The map shows that Bev lives 4 miles from her school.

Use the map above to answer each question.

1. How many miles is Bev's house from the library? \qquad [6 miles]
2. How many miles does Karl live from the mall? \qquad [2 miles]
3. Who lives closer to school, Bev or Karl? How much closer?
[Bev lives 1 mile closer.]
4. Bev goes from her house, to the library, and then to the post office. At that point, how far did she travel? \qquad [9 miles]
5. How many miles is a round trip from Karl's house to school and back?
\qquad [10 miles]
6. Who lives closer to the library, Bev or Karl? Explain.
[Karl lives closer. He can travel either 3 miles or 4 miles to the library.
Bev lives 6 miles from the library.]

CHALLENGE

What is the shortest route to the school from the library shown on the map? What is the distance?

[Start at the library. Go 1 mile to the mall, 2 miles to Karl's house,

then 5 miles to the school. The distance is 8 miles.]

A map is a diagram that shows distances between different locations.
The map below shows some trails in a forest.
It is 1 mile between each pair of circle markers shown on the map.
So, it is 6 miles from the trailhead to the top of the Trail A.

Use the map above to answer each question.

1. How far is it from the trailhead to the top of Trail B ? \qquad [5 miles]
2. How far is it from the trailhead to the top of Trail C? \qquad [7 miles]
3. Trail D connects Trails B and C. How long is Trail D? \qquad [3 miles]
4. Start at the trailhead and start to follow Trail B. Then go along Trail D to the top of Trail C. How far is it to the top? \qquad [7 miles]
5. What is the total roundtrip distance from the trailhead to the top of Trail
A and back? \qquad [12 miles]
6. What is the shortest total distance of a hike that starts at Trail C, turns onto Trail D and then follows Trail B to the trailhead of Trail B?
\qquad [10 miles]
7. How much longer is a roundtrip hike from the trailhead to the top of Trail C than a roundtrip hike to the top of Trail A? \qquad [2 miles]

CHALLENGE

Suppose the distance between each pair of markers on the map were 5 miles. How far would it be to the top of Trail A? Explain.
[30 miles; Possible explanations: $6 \times 5=30$ or count by 5 s between markers.]

A scale drawing is a drawing that shows a real object enlarged or reduced. The scale is a ratio that compares the size of the object in the drawing to the size of the actual object.

The map shows the location of 7 different sites an archaeologist is mapping.

What is the actual distance between Site A and Site B ?
The map uses the scale 1 inch $=12$ miles.
Use a ruler to measure the distance from Site A to Site B on the map.
The distance on the map is $2 \frac{1}{2}$ or 2.5 inches
Find an equivalent ratio to find the actual distance.
actual distance

map scale distance $\longrightarrow \frac{12 \mathrm{mi}}{1 \text { in. }}=\frac{?}{2.5}$ actual distance

Think: $2.5 \times 12=30 \quad \frac{12 \mathrm{mi}}{1 \mathrm{in} .}=\frac{30 \mathrm{mi}}{2.5 \mathrm{mi}}$
The actual distance between the sites is 30 miles.

Use the above map and map scale to find each distance.

1. What is the actual distance between Site B and Site C ? \qquad [36 mi]
2. What is the actual distance between Site C and Site D ? \qquad [24 mi]
3. What is the actual distance between Site D and Site E ? \qquad [18 mi]
4. What is the actual distance between Site E and Site F? \qquad [12 mi]
5. What is the actual distance between Site F and Site G ? \qquad [6 mi]
