RC-AM

ATTIVITÀ 1

COGNOME		NOME		
CLASSE	SCUOLA		_DATA	
Versa una punta di spatola punta di spatola di nitrato granelli con il pestello. Pren	di sodio (in simbe di nota di ciò che	oli chimici: NaNO₃) nel avviene.	lo stesso morta	aio e tritura i
 a. In un becher da 100 m acqua distillata; agita ac b. In un becher da 100 ml acqua distillata; agita ac 	curatamente con metti una punta d	una bacchetta di vetro di spatola di ioduro di p	otassio. Aggiu	
N.B. – La bacchetta di vetro de	ve essere accurata	amente lavata quando si	cambia di bech	ier.
Versa il contenuto del becl Lascia riposare per alcuni cosa non cambia tra la situa	minuti. Prendi no azione iniziale e q	ta di ciò che avviene e uella finale.	e indica cosa c	ambia e che
Completa la tabella con le opp				
nitrato di sodio	stato fisico	colore	n° sostanze	n° fasi
Tilliato di Sodio				
ioduro di potassio				
nitrato di sodio + acqua (becker A)				
ioduro di potassio + acqua (becker B)				
nitrato di sodio + ioduro di potassio				
nitrato di sodio + acqua + ioduro di potassio + acqua				

RC-AM	Alli	VIIAI	OL 2	"namel®	
COGNOME		NOME			
CLASSE	SCUOLA		_DATA		
 a. In un becher da 100 ml metti una punta di spatola di nitrato di potassio (in simboli chimici: KNO₃). Aggiungi 25 cm³ di acqua distillata; agita accuratamente con una bacchetta di vetro. b. In un becher da 100 ml metti una punta di spatola di ioduro di piombo (in simboli chimici: Pbl₂). Aggiungi 25 cm³ di acqua distillata; agita accuratamente con una bacchetta di vetro. N.B. – La bacchetta di vetro deve essere accuratamente lavata quando si cambia di becher. Versa il contenuto del becher A nel becher B. Agita accuratamente con la bacchetta di vetro. Lascia riposare per alcuni minuti. Prendi nota di ciò che avviene e indica cosa cambia e che 					
cosa non cambia tra la situ					
Completa la tabella con le opportune informazioni:					
	stato fisico	colore	n° sostanze	n° fasi	
nitrato di potassio					
	i l		I	I	

	stato fisico	colore	n° sostanze	n° tasi
nitrato di potassio				
ioduro di piombo				
nitrato di potassio + acqua (becker A)				
ioduro di piombo + acqua (becker B)				
nitrato di potassio + acqua + ioduro di piombo + acqua				

110 1111	11111		020	- ame
COGNOME		NOME		
CLASSE	SCUOLA		_DATA	
Versa una punta di spatola punta di spatola di nitrato di granelli con il pestello. Pren	piombo (in simbo	oli chimici: Pb(NO ₃) ₂) n		
a. In un becher da 100 m acqua distillata; agita ac b. In un becher da 100 ml acqua distillata; agita ac n.B. – La bacchetta di vetro dev 3. Versa il contenuto del bech Lascia riposare per alcuni cosa non cambia tra la situ. Completa la tabella con le oppositorio del popositorio del permenento del bech Lascia riposare per alcuni cosa non cambia tra la situ.	ccuratamente co I metti una punta ccuratamente co re essere accurata ner A nel becher E minuti. Prendi no uazione iniziale e	n una bacchetta di veti di spatola di ioduro di n una bacchetta di veti mente lavata quando s B. Agita accuratamente ta di ciò che avviene quella finale.	potassio. Aggiu To. i cambia di bech e con la bacche e indica cosa ca	ngi 25 cm ³ di n er. Ita di vetro. ambia e che
	stato fisico	colore	n° sostanze	n° fasi
nitrato di piombo	Otato Holoo	301010	ii oodanzo	
ioduro di potassio				
nitrato di piombo + acqua (becker A)				
ioduro di potassio + acqua (becker B)				
nitrato di piombo + ioduro di potassio				
nitrato di piombo + acqua + ioduro di potassio + acqua				

Tone unamela

COGNOME		NOME		
CLASSE	SCUOLA		DATA	
	ne una soluzione di nitra no 10 g di una soluzione d			è 15 g. Nel
1. Secondo te, cosa a	avviene?			
Secondo te, la ma soluzioni è:	assa di ciò che è conte	enuto nel recipiente A	A dopo aver mesco	olato le due
□ 10 g	□ 15 g	□ 20 g	□ 25 g	
□ 30 g	□ 40 g	☐ Non si può ris	pondere	
Giustifica la tua rispos	sta			
	mento che seguiresti per isposizione una bilancia d			ale la tua
	•••••	•••••		

N	C-AM	AIIIVIIAI	FOL 3	^V namel ^o
C	OGNOME	NOME	≣	
CI	LASSE SCUO	LA	DATA	
Ri	prendendo in esame le proprietà de	el modello particellare de	ella materia:	
1.	UNA PARTICELLA NON SI PU	Ò DIVIDERE, È INDIV	ISIBILE	
2.	UNA PARTICELLA NON PUÒ (CAMBIARE FORMA, È	INDEFORMABILE	
3.	UNA PARTICELLA HA SEMPRI	E LE STESSE DIMENS	SIONI	
4.	UNA PARTICELLA DI UNA CEI	RTA SOSTANZA HA S	EMPRE LA STESSA Ç	QUANTITÀ
	DI MATERIA, CHE CAMBIA AL	CAMBIARE DELLA S	SOSTANZA	
5.	UN SOLO TIPO DI PARTICELL	E INDIVIDUA UNA SO	OSTANZA	
6.	UN DETERMINATO NUMERO	DI PARTICELLE DELI	LO STESSO TIPO EQU	JIVALE
	SEMPRE ALLA STESSA QUAN	TITÀ DI SOSTANZA		
7.	TRA LE PARTICELLE ESISTON	NO SPAZI VUOTI PIÙ	O MENO GRANDI A S	SECONDA
	DELLO STATO FISICO DELLA	SOSTANZA		
8.	LE PARTICELLE SONO PIÙ O M	MENO STIPATE TRA I	LORO E PIÙ O MENO	
	VINCOLATE LE UNE ALLE ALT	TRE, A SECONDA DE	LLO STATO FISICO D	ELLA
	SOSTANZA			
9.	LE PARTICELLE SONO PIÙ O M	MENO LIBERE DI MU	OVERSI E/O SPOSTA	RSI A
	SECONDA DELLO STATO FISI	CO DELLA SOSTANZ	A	
10). LE PARTICELLE SONO DISPOS	STE IN MODO PIÙ O	MENO ORDINATO A	SECONDA
	DELLO STATO FISICO DELLA	SOSTANZA		
	uali proprietà del modello particellar è pervenuti al termine di questa atti		er tenere conto delle co	nclusioni a cui
Gi	iustifica la tua risposta:			
• • •				

Toneunamala

COGNOME		NOME	
CLASSE	SCUOLA		
Alle estremità di un tubo imbevuto di una soluzione imbevuto di una soluzione foglio di polietilene o altro:	e concentrata di clo concentrata di amm	ruro di idrogeno	e un batuffolo di cotone
Escludendo i batuffoli di c po' di tempo è:	otone, secondo te, lo	stato fisico di ciò c	he si vede nel tubo dopo un
-	□ liquido □ liquido e soli		☐ gassoso e solido assoso, liquido e solido
Escludendo i batuffoli di co essere definita:	otone, secondo te, ciò	che si vede nel tub	o dopo un po' di tempo può
☐ una sostanza	una miscela on	nogenea	☐ una miscela eterogenea
Descrivi ora ciò che, secon	ndo te, avviene nel tub	0	

COGNOME		NOME	
CLASSE	SCUOLA		_DATA
1. Secondo te, quello c	he si è depositato nel	tubo è:	
□ ammoniaca □	l cloruro di idrogeno	☐ una nuova sostanza	☐ non so rispondere
Giustifica la tua risposta	1		
2. Secondo te, nel tubo	di vetro si è prodotta	:	
☐ una trasformazion	e fisica 🔲 una tr	asformazione chimica	
un altro tipo d	i trasformazione	non so rispondere	
Giustifica la tua risposta	1		
Secondo te, tra l'init sostanze) è:	zio e la fine dell'esp	erimento, la massa totale	e del tubo (tubo + cotone +
□ Aumentata	□ Diminuita		
☐ Rimasta inalte	erata 🔲 Non è pos	ssibile rispondere	
Giustifica la tua risposta	1		

Prova a rappresentare ciò che è avvenuto mediante il modello particellare

noneinamela

RC-AM ATTIVITÀ 2 FOL 8


COGNOME		NOME		
CLASSE	SCUOLA		DATA	

Abbiamo studiato l'interazione tra il cloruro di idrogeno (gas) e l'ammoniaca (gas) con formazione di cloruro di ammonio (solido).

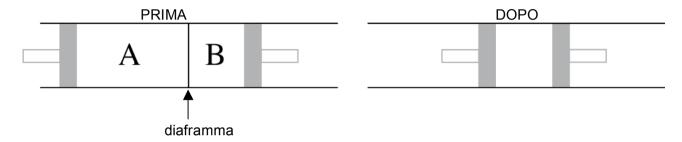
Ora dobbiamo riflettere su questa trasformazione chimica utilizzando il modello particellare. Dato che si tratta di una trasformazione di sostanze allo stato gassoso, ci conviene ragionare ammettendo che la trasformazione avvenga a temperatura costante (per esempio 20°C) e a pressione costante (per esempio 101 kPa).

La situazione sperimentale è la seguente. Un cilindro è chiuso alle estremità da due pistoni mobili. Un diaframma rimovibile divide il cilindro in due contenitori a tenuta. I due contenitori hanno lo stesso volume e contengono ognuno 1 dm³ di gas: il contenitore A contiene 1 dm³ di cloruro di idrogeno, il contenitore B contiene 1 dm³ di ammoniaca.

Nel disegno che segue è raffigurata la situazione sperimentale prima e dopo la trasformazione.

1 dm³ di cloruro di idrogeno (gas) + 1 dm³ di ammoniaca (gas) → Cloruro di ammonio (solido bianco)

Usando il modello particellare, rappresenta le sostanze reagenti prima e dopo la trasformazione. Rappresenta a parte il solido bianco, prodotto della trasformazione.

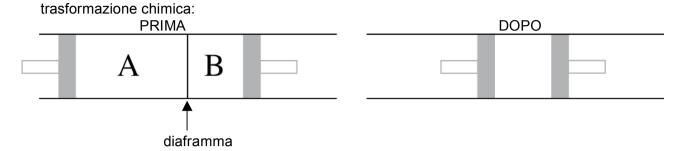

Giustifica le tue rappresentazioni	

NC-AM	AIIIVII	A 2 FOL 9	<i>Shamelo</i>
COGNOME_		NOME	
CLASSE	SCUOLA	DATA	

Mutiamo la situazione sperimentale dell'attività precedente. Il cilindro è sempre chiuso alle due estremità dai pistoni mobili. Il diaframma rimovibile divide il cilindro in due contenitori a tenuta. I due contenitori contengono volumi diversi di gas:

1. Il contenitore A contiene 2 dm³ di cloruro di idrogeno; il contenitore B contiene 1 dm³ di ammoniaca. Nel disegno che segue è raffigurata la situazione sperimentale prima e dopo la trasformazione chimica:

Rappresenta le sostanze prima e dopo la trasformazione chimica utilizzando il modello particellare.


Giustifica le tue rappresentazioni	
••••••	•••••

Gira il foglio

ATTIVITÀ 2 RC-AM FOL 9


2. Il contenitore A contiene 2 dm³ di ammoniaca; il contenitore B contiene 1 dm³ di cloruro di idrogeno. Nel disegno che segue è raffigurata la situazione sperimentale prima e dopo la

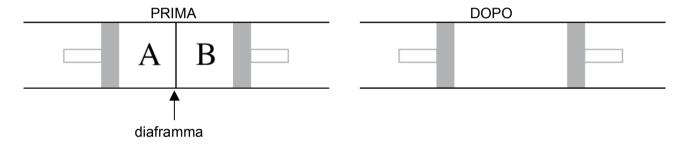
Rappresenta le sostanze prima e dopo la trasformazione chimica utilizzando il modello particellare.

Giustifica le tue rap	presentazioni		

3. Il contenitore A contiene 1,3 dm³ di ammoniaca; il contenitore B contiene 1 dm³ di cloruro di idrogeno. Nel disegno che segue è raffigurata la situazione sperimentale prima e dopo la trasformazione chimica:

Rappresenta le sostanze prima e dopo la trasformazione chimica utilizzando il modello particellare.

Giustifica le tue rappresentazioni



COGNOME		NOME	
CLASSE	SCUOLA		DATA

Studiamo ora la combinazione che tra le sostanze gas idrogeno e gas cloro. Dato che si tratta di una trasformazione chimica tra sostanze allo stato gassoso, ammettiamo, come già visto, di operare a temperatura e pressioni costanti.

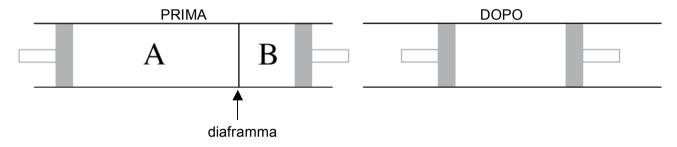
La situazione sperimentale è la seguente. Un cilindro è chiuso alle due estremità da due pistoni mobili. Un diaframma rimovibile divide il cilindro in due contenitori a tenuta. I due contenitori hanno lo stesso volume e contengono ognuno 1 dm³ di gas: il contenitore A contiene gas idrogeno, il contenitore B contiene gas cloro. Si rimuove il diaframma e si fa avvenire la trasformazione chimica: i due gas di partenza reagiscono completamente producendo 2 dm³ di una nuova sostanza gassosa (cloruro di idrogeno).

Nel disegno che segue è raffigurata la situazione sperimentale prima e dopo la trasformazione.

Usando il modello particellare rappresenta le sostanze prima e dopo la trasformazione chimica

ustifica le tue rappresentazioni	

RC-AM			$\mathbf{A}^{T}\mathbf{\Gamma}$	IVITA 3	FOL 11	Suname la
COGNOME _				NOME_		
CLASSE		S	CUOLA		DATA	
idrogeno preno	lendo in Ila sosta	considera nza che	azione le masse si forma come	e delle sostanze i	eno con formazione reagenti (gas cloro e asformazione chimic	gas idrogeno)
	PR	IMA			DOPO	
. =	A	В	Ŀ.			
Si rimuove il di con tutto il gas	aframma cloro.	e 0,89 g o ı e si fa a	vvenire la trasfo	ormazione chimic	331,7 g di gas cloro. a. Tutto il gas idrogo drogeno che si è forr	eno si combina
Giustifica la tua	a risposta	3 .				



COGNOME _		NOME	
CLASSE	SCUOLA	С)ATA

Studiamo ora la combinazione tra le sostanze gas diidrogeno e gas diazoto. Dato che si tratta di una trasformazione chimica tra sostanze allo stato gassoso, ammettiamo, come già visto, di operare a temperatura e pressioni costanti.

La situazione sperimentale è la seguente. Un cilindro è chiuso alle due estremità da due pistoni mobili. Un diaframma rimovibile divide il cilindro in due contenitori a tenuta. Il contenitore A contiene 3 dm³ di gas diidrogeno; il contenitore B contiene 1 dm³ di gas diazoto. Si rimuove il diaframma e si fa avvenire la trasformazione chimica: i due gas reagiscono completamente producendo 2 dm³ di una nuova sostanza gassosa, l'ammoniaca.

Nel disegno che segue è raffigurata la situazione sperimentale prima e dopo la trasformazione.

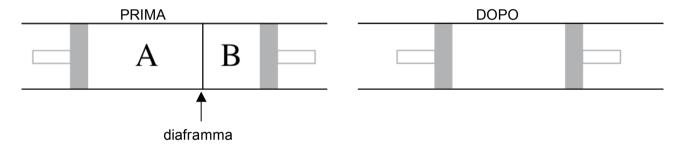
1. Usando il modello particellare rappresenta le sostanze prima e dopo la trasformazione chimica

2. Ora rappresenta le stesse sostanze sostituendo i simboli iconici con i rispettivi simboli chimici; assegna poi a ciascuna sostanza il nome secondo la nomenclatura IUPAC.

Gira il foglio

3.	Consideriamo ora la stessa trasformazione chimica prendendo in considerazione le masse delle
	sostanze reagenti (gas diazoto e gas diidrogeno) e la massa della sostanza che si forma come
	prodotto della loro combinazione; l'ammoniaca. Il contenitore A contiene 0,27 g di gas
	diidrogeno e il contenitore B 1,25 g di gas diazoto. Si ammette che nella trasformazione chimica
	tutto il gas diidrogeno reagisca con tutto il gas diazoto. Secondo te, quanto è, in grammi, la
	massa del gas ammoniaca che si è formata?

G	iiu	sti	fie	ca	1	а	t	u	a	r	is	şŗ	OC	S	t	a.																																		
						•											 • •	 ٠.	 	 	 				 			 	-					 			 	•	 	 	 	 		•	 	 	 	 	 	



COGNOME		NOME		
CLASSE	SCUOLA		DATA	

Studiamo ora la combinazione tra le sostanze gassose gas diidrogeno e gas diossigeno. Dato che si tratta di una trasformazione chimica tra sostanze allo stato gassoso, ammettiamo, come già visto, di operare a temperatura e pressioni costanti.

La situazione sperimentale è la seguente. Un cilindro è chiuso alle due estremità da due pistoni mobili. Un diaframma rimovibile divide il cilindro in due contenitori a tenuta. il contenitore A contiene 2 dm³ di gas diidrogeno; il contenitore B contiene 1 dm³ di gas diossigeno Si rimuove il diaframma e si fa avvenire la trasformazione chimica tra i due gas che reagiscono completamente producendo 2 dm³ di una nuova sostanza: acqua allo stato gassoso

Nel disegno che segue è raffigurata la situazione sperimentale prima e dopo la trasformazione.

1. Usando il modello particellare, rappresenta le sostanze prima e dopo la trasformazione chimica

2. Ora rappresenta le stesse sostanze sostituendo i simboli iconici con i rispettivi simboli chimici; assegna poi a ciascuna sostanza il nome secondo la nomenclatura IUPAC.

Gira il foglio

3.	Consideriamo ora la stessa trasformazione chimica prendendo in considerazione le masse delle sostanze reagenti (diossigeno e diidrogeno) e la massa della sostanza acqua che si forma come prodotto della loro combinazione. il contenitore A contiene 0,18 g di diidrogeno e il contenitore B 1,44 g di diossigeno. Secondo te, quanti grammi di diidrogeno e quanti grammi di diossigeno dovresti far reagire per ottenere 1,00 kg di acqua?
Gi	ustifica la tua risposta.

COGNOME		NOME	
CLASSE SCU	OLA		DATA
CHI HA RAGIONE?			
Un laboratorio di analisi ha ricevuto	tre contenitori sigil	lati.	
 Il primo contenitore proviene da massa è: 110,7 grammi Il secondo contenitore proviene massa è: 23,4 grammi Il terzo contenitore proviene da 3,6 grammi 	da SHANGHAI (CINA) e contiene	e un liquido incolore la cui
Le analisi hanno fornito, rispettivam	ente per i tre conte	nitori, i seguenti r	isultati:
 Il liquido incolore è risultato cos 12,3 grammi di idrogeno e 98,4 ç Il liquido incolore è risultato cos 2,6 grammi di idrogeno e 20,8 gr Il liquido incolore è risultato cos 0,4 grammi di idrogeno e 3,2 gra 	grammi di ossigeno tituito completame ammi di ossigeno tituito completame	nte di idrogeno e	e ossigeno e precisamente:
I risultati sono stati sottoposti all'a conclusioni:	ttenzione di tre stu	identi di chimica	che sono arrivati a queste
Studente 1 – Nel contenitore n.1 e r diversa da quella pres Studente 2 – I tre contenitori conter Studente 3 – I tre contenitori conter	ente nel contenitore Igono tre sostanze	e n.2. composte diverse	•
Secondo te, chi ha ragione?			
☐ Studente 1	☐ Student	e 2	☐ Studente 3
☐ Nessuno dei tre	□ È impos	sibile deciderlo	
Giustifica la tua risposta			

noneur 18

СО	GNOME	N	IOME
CLA	ASSE	SCUOLA	DATA
Ripr	rendendo in esan	ne le proprietà del modello particella	re della materia:
1.	Le particelle di	•	cole) sono divisibili, poiché sono formate
2.	•	non può cambiare fo	rma, è indeformabile
3.	Una particella .	ha sempre le stesse	dimensioni
4.	•	di una certa sostanza	a ha sempre la stessa quantità di materia
5.	Un solo tipo di-	particella individua ι	ına sostanza
6.	Un determinato stessa quantità	•	. dello stesso tipo equivale sempre alla
7.	Tra le particelle fisico della sos	•	ti più o meno grandi a seconda dello stato
8.	Le particelle	sono più o meno stipa	te tra loro e più o meno vincolate le une
	alle altre, a sec	onda dello stato fisico della sostanz	ca
9.	Le particelle	sono più o meno libere	e di muoversi e/o spostarsi a seconda
	dello stato fisic	o della sostanza	
10.	Le particelle	sono disposte in modo	più o meno ordinato a seconda dello
	stato fisico dell	a sostanza	
	tituisci, in ognun nine che ritieni più	·	ello particellare, la parola "particella" con il
Gius	stifica la tua scelt	a:	

COGNOME		NOME	
CLASSE	SCUOLA	DATA	
Come abbiamo visto nell diidrogeno e 1 dm³ di diclo	l'attività 3 (FOL 10), a ro reagiscono formando 2	temperatura e pressioni costant dm³ di cloruro di idrogeno.	i, 1 dm³ d
	ticellare rappresenta le s formazione chimica (prodo	ostanze prima della trasformaziotti).	one chimica
Diidrogeno	Dicloro	Cloruro di idroger	סר
2. Ora rappresenta le stes	se sostanze sostituendo i s	simboli iconici con i rispettivi simbo	oli chimici.
Diidrogeno	Dicloro	Cloruro di idroger	10
	i diidrogeno, le molecole d eazione che segue utilizza	i dicloro e le molecole di cloruro d ndo i simboli chimici.	i idrogeno e
+	→		
4. Il gas diidrogeno è:			
☐ una sostanza semplio	ce una sostanza	composta 🚨 una miscela di sos	stanze
Il gas dicloro è:			
☐ una sostanza semplio	ce una sostanza	composta 🚨 una miscela di sos	stanze
Il gas cloruro di idrogeno	o è:		
☐ una sostanza semplio	ce una sostanza	composta 🚨 una miscela di sos	stanze

COGNOME	NOME			
CLASSE SC	UOLA	DATA		
Come abbiamo visto nell'attività 3 (FOL 12) a temperatura e pressioni costanti, 3 dm³ di diidroger e 1 dm³ di diazoto reagiscono formando 2 dm³ di ammoniaca.				
Usando il modello particellare (reagenti) e dopo la trasformaz		rima della trasformazione chimica		
Diidrogeno	Diazoto	Ammoniaca		
2. Ora rappresenta le stesse sost	anze sostituendo i simboli icor	nici con i rispettivi simboli chimici.		
Diidrogeno	Diazoto	Ammoniaca		
3. Ora scrivi lo schema della reaz	ione chimica.			
4. Il gas diidrogeno è:				
☐ una sostanza semplice	☐ una sostanza composta	☐ una miscela di sostanze		
Il gas diazoto è:				
☐ una sostanza semplice	☐ una sostanza composta	☐ una miscela di sostanze		
Il gas ammoniaca è:				
una sostanza semplice	☐ una sostanza composta	☐ una miscela di sostanze		
	una sostanza composta	una misocia di sostanze		

COGNOME	N	OME	
CLASSE	_ SCUOLA	DATA	
Come abbiamo visto nell'a diidrogeno e 1 dm³ di diossi	attività 3 (FOL 13), a tem geno reagiscono formando 2	peratura e pressioni costa dm³ di acqua gassosa.	anti, 2 dm³ di
	cellare, rappresenta le sost ormazione chimica (prodotti).	anze prima della trasforma	zione chimica
Diidrogeno	Diossigeno	Acqua	
2. Ora rappresenta le stesso	e sostanze sostituendo i simb	poli iconici con i rispettivi sim	nboli chimici.
Diidrogeno	Diossigeno	Acqua	
3. Ora scrivi lo schema della	a reazione chimica.		
4. Il gas diidrogeno è:			
☐ una sostanza semplice	e □ una sostanza composta	una miscela di sostanze	Э
Il gas diossigeno è:			
una sostanza semplice	e 🗖 una sostanza composta	una miscela di sostanzo	е
Il gas acqua è:			
☐ una sostanza semplice	e □ una sostanza composta	una miscela di sostanza	е



COGNOME		NOME		
CLASSE_	SCUOLA		DATA_	

Studiamo ora la combinazione tra le sostanze gassose diazoto e diossigeno. Dato che si tratta di una trasformazione chimica tra sostanze allo stato gassoso, ammettiamo, come già visto, di operare a temperatura e pressioni costanti.

La situazione sperimentale è la seguente. Un cilindro è chiuso alle due estremità da due pistoni mobili. Un diaframma rimovibile divide il cilindro in due contenitori a tenuta. Il contenitore A contiene 2 dm³ di diazoto; il contenitore B contiene 1 dm³ di diossigeno. Si rimuove il diaframma e si fa avvenire la trasformazione chimica tra i due gas che reagiscono completamente producendo 2 dm³ di una nuova sostanza.

Nel disegno che segue è raffigurata la situazione sperimentale prima e dopo la trasformazione.

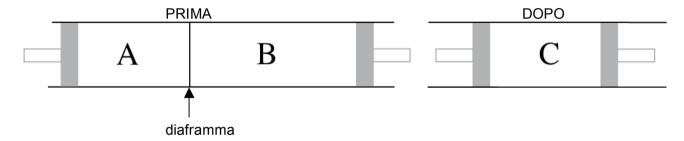
1. Usando il modello particellare rappresenta le sostanze prima della trasformazione chimica (reagenti) e dopo la trasformazione chimica (prodotti).

Diazoto Diossigeno Nuova sostanza

2. Ora rappresenta le stesse sostanze sostituendo i simboli iconici con i rispettivi simboli chimici.

Diazoto Diossigeno Nuova sostanza

3. Ora scrivi lo schema della reazione chimica.



COGNOMEN		NOME		
CLASSE	SCUOLA		DATA	

Studiamo ora la combinazione tra le sostanze gassose diazoto e diossigeno. Dato che si tratta di una trasformazione chimica tra sostanze allo stato gassoso, ammettiamo, come già visto, di operare a temperatura e pressioni costanti.

La situazione sperimentale è la seguente. Un cilindro è chiuso alle due estremità da due pistoni mobili. Un diaframma rimovibile divide il cilindro in due contenitori a tenuta. Il contenitore A contiene 2 dm³ di diazoto; il contenitore B contiene 3 dm³ di diossigeno. Si rimuove il diaframma e si fa avvenire la trasformazione chimica tra i due gas che reagiscono completamente producendo 2 dm³ di una nuova sostanza.

Nel disegno che segue è raffigurata la situazione sperimentale prima e dopo la trasformazione.

1. Usando il modello particellare rappresenta le sostanze prima della trasformazione chimica (reagenti) e dopo la trasformazione chimica (prodotti).

Diazoto Diossigeno Nuova sostanza

2. Ora rappresenta le stesse sostanze sostituendo i simboli iconici con i rispettivi simboli chimici.

Diazoto Diossigeno Nuova sostanza

3. Ora scrivi lo schema della reazione chimica.

RC-AM

ATTIVITÀ 5 Verifica FOL 21

CO	GNOME		NOME	<u>=</u>	
CL	ASSE	SCUOLA_		DATA	
; 	si tratta di una trasferisto, di operare a te Un cilindro è chiuso Un diaframma rimov I contenitore A cont diossigeno (0,80 g).	ormazione chimica mperatura e pressi alle due estremità bile divide il cilindr iene 2 dm ³ di dios nma e si fa avveni	di sostanze allo si ioni costanti. La situ da due pistoni mobi o in due contenitori sido di zolfo (3,20	ossido di zolfo e diossigeno. Dato che tato gassoso, ammettiamo, come gia iazione sperimentale è la seguente. li. a tenuta. g); il contenitore B contiene 1 dm³ c e completa tra i due gas ottenendo :	à
á	a. Rappresenta icon la trasformazione		nze prima della tras	formazione chimica (reagenti) e dope	Э
	Diossido di	zolfo	Diossigeno	Nuova sostanza	
ł	o. Scrivi lo schema d	della reazione chim	ica.		
(c. Denomina la nuov	va sostanza utilizza	ando la nomenclatui	ra IUPAC	
(d. Calcola la massa	di diossido di zolfo	necessaria per pre	eparare 2,0 kg della nuova sostanza	

ATTIVITÀ 5 Verifica **FOL 21**

RC-AM

2. Esaminiamo la combinazione tra le sostanze gassose A e B. Dato che si tratta di una trasformazione chimica tra sostanze allo stato gassoso, ammettiamo, come già visto, di operare a temperatura e pressioni costanti. La situazione sperimentale è la seguente.

Un cilindro è chiuso alle due estremità da due pistoni mobili.

Un diaframma rimovibile divide il cilindro in due contenitori a tenuta.

Un contenitore contiene la sostanza A; l'altro contiene diossigeno.

Si rimuove il diaframma e si fa avvenire la trasformazione chimica completa tra i due gas ottenendo una nuova sostanza.

Usando la rappresentazione simbolico-chimica (schema di reazione chimica), un vostro compagno ha scritto le sostanze prima della trasformazione chimica (reagenti) e dopo la trasformazione chimica (prodotti) nel modo seguente.

$$2NO + O_2 \rightarrow 2NO_2$$

- a. Significa che reagiscono rispettivamente i seguenti volumi di gas:
 - A) 2 dm³ della sostanza A e 0,5 dm³ di diossigeno
 - B) 2 dm³ della sostanza A e 1 dm³ di diossigeno

 - C) 2 dm³ della sostanza A e 2 dm³ di diossigeno
 D) 1 dm³ della sostanza A e 2 dm³ di diossigeno

Giustifica la tua risposta

E) 0.5 dm³ della sostanza A e 1 dm³ di diossigeno

	dollinou iu tuu riopootu		
	Rappresenta iconicamente le sostanz la trasformazione chimica (prodotti).	e prima della tras	sformazione chimica (reagenti) e dopo
	Sostanza A	diossigeno	Nuova sostanza
C.	Assegna il nome alla sostanza A e alla	a nuova sostanza	a utilizzando la nomenclatura IUPAC
	sostanza A		
	nuova sostanza		

RC-AM FOL allegato

Tabella di individuazione degli elementi chimici (Nome, simbolo, anno di riconoscimento della sua specificità di sostanza semplice)

Nome	Derivazione	Simbolo	Individuato nell'anno
Afnio	dal nome latino dì Copenhagen, Hafnia	Hf	1923
Alluminio	dal latino alumen, bruno, scuro (bistro)	Al	1827
Americio	da America	Am	1944
Antimonio	il simbolo Sb deriva dal latino stibium, antico cosmetico che tingeva le sopracciglia in nero	Sb	1450 ~
Argento	Argento dal latino argéntum	Ag	Antichità
Argon	dal greco argos, inattivo, inerte	Ar	1894
Arsenico	dal greco arsenikon (arsenikos, maschio)	As	1250
Astato	dal greco astatos, instabile	At	1940
Attinio	dal greco aktinos,fascio	Ac	1899
Azoto	dal greco a-, senza e zoè, vita (latino, nitrum)	\mathbf{N}	1772
Bario	dal greco barys	Ba	1808
Berillio	dal greco bèryllos, berillo	Be	1828
Berkelio	dalla sede dell'Università della California, Berkeley	Bk	1950
Bismuto	dal tedesco Wismut (latino, bisemutum)	Bi	1753
Boro	dall'arabo Buraq (persiano, burah)	В	1806
Bromo	dal greco bromos, fetore	Br	1826
Cadmio	dal latino cadmia	Cd	1817
Calcio	dal latino calx, calcis, calce	Ca	1808
Californio	da California, USA	Cf	1950
Carbonio	dal latino carbo, Carbonis, carbone	\mathbf{C}	Antichità
Cerio	D'asteroide Cerere scoperto in quel periodo	Ce	1803
Cesio	dal latino caesius, azzuro-cielo	Cs	1860
Cloro	dal greco chloros, giallo-verdastro	Cl	1774
Cobalto	dal tedesco Kobold, spirito maligno	Co	1735
Cripton	dal greco kryptós, nascosto	Kr	1898
Cromo	dal greco cbroma, colore (per i molti colori dei suoi composti)	Cr	1797
Curio	dagli scienziati Pierre e Marie Curie	Cm	1944
Disprosio	dal greco dysprositos, difficile da ottenere	Dy	1886
Einsteinio	dallo scienziato Einstein	Es	1952
Elio	dal greco hélios, solo	He	1868
Erbio	da Ytterby, città della Svezia dove fu scoperto	Er	1843
Europio	da Europa	Eu	1896
Fermio	dallo scienziato Enrico Fermi	Fm	1953
Ferro	dal latino ferrum	Fe	Antichità
Fluoro	dal latino fluire, scorrere	\mathbf{F}	1886
Fosforo	dal greco phosphoros, che porta la luce	P	1669
Francio	da Francia	Fr	1939
Gadolinio	dal minerale gadolinite, nome assegnato in onore del chimico finlandese Gadolin	Gd	1880
Gallio	dal latino Gallia, Francia	Ga	1875

nonèunamela - Storia ed Epistemologia per una Nuova Didattica delle Scienze (SENDS)

RC-AM

FOL allegato

Nome	Derivazione	Simbolo	Individuato
			nell'anno
Germanio	da Germania	Ge	1886
Idrogeno	dal greco hydros, acqua e genos, produttore (già noto	Н	1766
·	come «aria di fuoco» per la sua infiammabilità)	-	40.60
Indio	dal colore indaco della riga del suo spettro	In	1863
Iodio	dal greco iodes, violetto	I	1811
Iridio	dal latino iris, arcobaleno	Ir	1803
Itterbio	da Ytterby, città della Svezia dove fu scoperto	Yb	1907
Ittrio	da Ytterby, città della Svezia dove fu scoperto	Y	1843
Lantanio	dal greco lanthanein, stare nascosto	La	1839
Laurenzio	dall'inventore del ciclotrone, Lawrence	Lr	1961
Litio	dal greco lithos, pietra (trovato cioè nei minerali)	Li	1817
Lutezio	dall'antico nome di Parigi, Lutetia	Lu	1907
Magnesio	dalla regione della Tessaglia, Magnesía	Mg	1808
Manganese	dal greco magnesion	Mn	1774
Mendelevio	dallo scienziato Mendeleev	Md	1955
Mercurio	dal pianeta mercurio, in greco hídrargyros, argento acqueo	Hg	Seconda
			metà del
			1700
Molibdeno	dal greco molybdos, piombo	Mo	1778
Neodimio	dal greco néos, nuovo, e didymos, gemello (degli elementi	Nd	1885
	delle terre rare)		
Neon	dal greco néos, nuovo	Ne	1898
Nettunio	dal pianeta Nettunio	Np	1940
Nichel	dal tedesco Nickel, Satana	Ni	1751
Niobio	dalla mitica Niobe	Nb	1801
Nobelio	dallo scienziato Nobel	No	1858
Olmio	dall'antico nome latino di Stoccolma, Holmia	Ho	1879
Oro	dal latino aurum	Au	Antichità
Osmio	dal greco osmè, odore (fetore)	Os	1803
Ossigeno	dal greco gonos,,origine, e oxys, dell'acido	O	1772
Palladio	dal greco palladion (dalla dea Pallade Atena)	Pd	1803
Piombo	dal latino plumbum	Pb	Antichità
Platino	dallo spagnolo platina, argento	Pt	1735
Plutonio	dal pianeta Plutone	Pu	1948
Polonio	dal luogo di nascita di Marie Curie, Polonia	Po	1898
Potassio	dal latino kalium e dall'inglese potash, cenere	K	1807
Praseodimi	dal greco prasios, verde, e didymos, gemello	Pr	1885
0			
Promezio	dal mitico Prometeo	Pm	1945
Protoattini	dal greco protos, primo, e aktis, raggio (prima dell'attinio)	Pa	1917
0			
Radio	dal latino radium, raggio	Ra	1898
Radon	emanazione del radio	Rn	1900
Rame	dal latino cuprum, dell'isola dì Cipro	Cu	Antichità
Renio	dal latino Rhenus, fiume Reno	Re	1925
	•		

RC-AM

FOL allegato

Nome	Derivazione	Simbolo	Individuato nell'anno
Rodio	dal greco, rhódon, rosa	Rh	1804
Rubidio	dal latino rubidus, rosso porpora	Rb	1861
Rutenio	dal latino Ruthenia, piccola Russia	Ru	1844
Samario	dal minerale samarskite	Sm	1879
Scandio	dal latino Scandiam, Scandinavia	Sc	1879
Selenio	dal greco seléne, luna	Se	1817
Silicio	dal latino sìlex, silicis, selce	Si	1824
Sodio	dall'antico nome latino sodam, o natrium	Na	1807
Stagno	dal latino stannum	Sn	Antichità
Stronzio	dalla città scozzese Strontian	Sr	1808
Tallio	dal greco thallos, germoglio (per il colore, verde della riga	Tl	1861
	dello spettro)		
Tantalio	dal mitico Tantalo (greco Tantalos)	Ta	1902
Tecnezio	dal greco technetos, artificiale	Tc	1937
Tellurio	dal latino tellus, terra	Te	1782
Terbio	dalla città Svedese Ytterby	Tb	1843
Titanio	dai mitologi Titani, figli della Terra	Ti	1791
Torio	dal mitologico dio scandinavo del tuono, Thor	Th	1828
Tulio	dall'antico nome della Scandínavìa, Thule	Tm	1879
Tungsteno	dallo svedese tung sten, pietra pesante (tedesco Wolfram)	\mathbf{W}	1783
Uranio	dal pianeta Urano	U	1789
Vanadio	dalla mitologica dea scandinava Vanadis	\mathbf{V}	1801
Xenon	dal greco xenos, straniero	Xe	1898
Zinco	dal. latino zink, di origine oscura	Zn	1746
Zirconio	Dal francese zircon, zircone (arabo zarqun, colore oro)	Zr	1789
Zolfo	dal latino sulphur	S	Seconda
			metà del
			1700