Architectural Design of
Distributed Applications

Designing Concurrent, Distributed, and Real-Time Applications with UML
Hassan Gomaa (2001)

Distributed Application Terminology

Subsystems consist of a collection of tasks
executing on a single logical node.

— Also called “components”

Subsystems may or may not run on multiple
physical nodes.

Components are logical nodes.
Nodes are physical nodes.

Distributed Application Terminology
(cont)

e Distributed Applications consist of subsystems
designed to run on multiple, distributed
physical nodes.

— Whether they are actually on distributed nodes or
not is a configuration decision; the system is
designed to provide this option.

Configurable Architectures and
Software Components (13.1)

* Distributed applications are intended to be
configurable — flexibility is a goal.

e Communication between tasks in different
subsystems is limited to messages to achieve
this flexibility

— Recall that messages are events with optional
attributes or data.

Steps in Designing Distributed
Applications (13.2)

1. System Decomposition
The overall system is broken into components that
could be located on distributed physical nodes.

2. Subsystem Decomposition

Each subsystem is broken into smaller components as
necessary. Because each subsystem operates on a
single node, non-distributed techniques may be used.

3. System Configuration

Instances of the subsystems are defined, connected,
and mapped onto a hardware configuration.

Designing Distribute Subsystems
(13.3.1)

* Places to start system decomposition:
— Use Cases

* Which objects must collaborate frequently?

— Geographic constraints

* Most often leads to client/server relationships, but may
be peer-to-peer

* Example: Bank Servers must be located at the bank.

ATMTransaction
« client PR, « server
subsystem » subsystem »
:ATMClient < :BankServer
J BankResponse

Aggregate and Composite Subsystems
in COMET (13.3.2)

 Composite Subsystems comprise objects that
share geographic location, but not necessarily
functionality.

* Aggregate Subsystems comprise objects that
share functionality, but not necessarily
geographic location.

e Systems may have both composite and
aggregate subsystems.

Aggregate and Composite Subsystems
in COMET (13.3.2, example)

aexternal input «external output «external input
device» device» device»
:ElevatorButton :ElevatorLamp :ArrivalSensor
Elevator \ Elevator Arrival
Button Lamp Sensor
Request Output Input
« system »
:ElevatorControl
Motor System I Door
Command Command
«oxl;r:,zinl::nput = «control subsystem» — “°x'f’::,ai::::"p"t
’ :ElevatorSubsystem Arrival < :Door
it F Motor (Floor #) Door
Response Departed Response
(Floor #)
Floor Lamp \ Elevator
/ Command \ Commitment
Scheduler
Direction Lamp Request \
Command
Service Request
«external input — «data collection — «coordinator
device» subsystem» subsystem»
:FloorButton Floor :FloorSubsystem :Scheduler
F Button |
Request
Direction Lamp
Output
Floor Lamp
Output
«external output «external output
device» device»
:FloorLamp :DirectionLamp

Criteria for Designing Configurable
Distributed Subsystems (13.3.3-4)

Proximity to the source of the physical data.
_Localized autonomy.

Performance.
Specialized hardware.
User Interface.
Server.

Designing Subsystem Interfaces (13.4)

* Synchronous or Tightly Coupled
Communication

— Wait for a reply.

* Asynchronous or Loosely Coupled
Communication
— “Fire and forget” messaging.

* Servers may support both, even to the degree

of allowing each client to select its
communication style.

Subscription/Notification Group
Communication (13.4.4)

* Objects subscribe to
groups

 Messages are sent to
all members of
groups.

NZ2a: alarmNotification

« server »

:AlarmHandling
Server

e
e

S1: subscribe

N2b: alarmNotification
—

e

« user interface »

firstOperator

Interface

NltAJarmT

«data collection»

-
S2: subscribe

N2c: alarm
Notification

« user interface »

secondOperator
Interface

« user interface »

Interface

Brokered Communication (13.4.5)

* An Object Broker facilitates communication
between clients and servers.

* Advantages:

— Location information is only stored in one place.

— Multiple servers may be used for a single type of
request.

Brokered Communication (13.4.5,
examples)

‘Broker :Broker

1: Client
Broker

2. Forwarded Regest

Regest # 3: Server\ Request / /
Reply \

2: Service
Handle

4: Forwarded

Reply 3: Client Service

Request
—
:Client :Server :Client :Server

-

4: Server
Reply

Forwarding Design Handle-driven Design

Negotiated Communication (13.4.6)

* Negotiated Communication involves clients, or
client agents, and server or server agents.

— Agents are objects that act on behalf of other
objects.

* Negotiated communication allows clients and
servers to cooperatively make decisions and
thus better use their resources.

Negotiated Communication
(13.4.6, cont)

* Clients, or Client Agents, may:
— Propose Service
— Request Service
— Reject Service Offer

* Servers, or Server Agents, may:
— Offer a service

— Reject client request/proposal
— Accept client request/proposal

Negotiated Communication
(13.4.6, example)

BAServer
2a: flightQuery
2a.1: response
1: propose (fripTolondon, <$750) 6: confirm
4: request (UA, $750)
2b: flightQuery
o . =
aClientAgent VAServer

TravelAgent

-~
3: offer (UA $750, BA $775)
7: accept

2b.1: response

2c: flightQuery

2c.1: response

Transaction Management (13.5)

 Two-Phase Commit protocols ensure all
desired outcomes of a transaction, or message
sequence, OccCuUr.

* Consider a banking transfer:
— Either both the credit and debit operations occur;

— Or neither the credit or debit operation should
occur.

Transaction Management (3.5.1,
example)

1b: prepareTo :CommitServer

Commit 2a.3: commited

:CommitServer

2b: commit

R

1a.3: readyTo

Commit/

1a: prepareTo . : 2b.3: commited
Commit 1b.3: readyTo 2a: commit
Commit
secondBank secondBank
firstBankServer ver firstBankServer Server
1a.1: lock 1b.1: lock 2a.1: confirmCredit 2b.1: confirmCredit
1a.2: debit l 1b.2: credit 2a.2: unlock 2b.2: unlock
fromAccount toAccount fromAccount toAccount

Prepare the transaction Commit the transaction

Design of Server Subsystems (13.6)

e Server subsystems may be:
— Sequential — processing only one request at a
time.
— Concurrent — processing several requests
simultaneously

Sequential Server Subsystem
(13.6.1, example)

clientTransaction

«clientSubsystem» >
:BankClient :
bankResponse
«sequentialServerSubsystem»
:BankServer
:BankTransactionServer
Debit(), Debit(),
Credit(), Credit(),
Read() Read()
:Checking :Savings
Account Account

Concurrent Server Subsystem
(13.6.2, example)

« concurrent server subsystem »
aConccurrentServer

:Server
Coordinator

readRequest

™\

don& readRequest

writeRequest
done

aWriter anotherWriter aReader anotherReader

Service

Response Service

Response

Service ‘L
Service Response
Response {Vrile()

‘/Read()

Distribution of Data (13.7)

In single server configurations, the server may become
a bottleneck for performance issues.

Data can be distributed to prevent performance
bottlenecks using two methods:

— Distributed Server
— Data Replication

Distributed Server systems involve keeping data at the
location it is collected, for local access.

Data Replication systems duplicate data to multiple
locations, ensuring

Distributed Server (13.7.1)

* Distributed Server systems involve storing data
at the location it is collected.

* The local server then responds to local
requests

* |f the data is needed elsewhere, a mechanism
must be desighed to facilitate transfer. This is
an example of data replication.

Data Replication (13.7.2)

* Data Replication involves duplicating data to
more than one location.

* Procedures for ensuring all the copies of data
remain updated must be desighed.

System Configuration (13.8)

e System configuration involves three activities:
— Defining instances of component types.
— Interconnecting the defined instances.

— Mapping the component instances to physical
nodes.

:ElevatorSubsystem
{1 node per elevator}

« local area network »

:FloorSubsystem :Scheduler
{1 node per floor} {1 node}

Summary (13.9)

Designing a system that can be configured onto
distributed physical nodes requires special
considerations.

Subsystems may be Aggregate or Composite.
Subsystem interfaces may be synchronous or
asynchronous.

Client/Server Communication may be:

— Subscription/Notification

— Brokered

— Negotiated

Summary (13.9, cont)

* Two-phase commit transactions ensure “all-or-
none” transactions.
e Server Subsystems may be:
— Sequential
— Concurrent
— Distributed

e System Configuration involves defining,

connecting, and mapping component
instances onto physical nodes.

