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Finite State Machines

* Finite state machines are conceptual machines
with a finite number of states.

e State transitions are changes in from one of
these states to another.
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Finite State Machines (cont)

e State Machines consist of two basic elements:
— Events: occurrences at a point in time.

— States: recognizable situations that exist over an
interval of time.
 The dynamic aspects of the problem domain
are modeled using finite state machines.

— Typically one Object encapsulates one state
machine.



Statecharts

* |[n UML, state machines are represented in
Statecharts.

e Statecharts may be flat or hierarchical, and
can depict a wealth of information regarding
the expected operation of a system.



Statechart Examples
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Statechart Examples (cont)




Statechart Examples (cont)




Conditions

e Conditions are represented after [ " ]
an event with square brackets
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Actions

e Actions associated with a state transition are
shown after the event causing that transition,
separated by a “/”.
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Too Many Actions Clutter Diagrams
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Activities

Activities actions appear on a states block
using the “Do / Activity” notation.

— Clean up the event transitions

— Prevent unnecessary repetition
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Activities Example
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Entry and Exit Actions

* Entry and Exit actions occur upon entering or
leaving a state.
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Entry and Exit Actions (cont)

* Entry and exit actions can also be displayed as
activities.
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Hierarchical Statecharts

* Hierarchies are used to simplify state charts.

— Each sub-state gains the transitions of the super-
state.

— Being in the super-state means being in one and
only one of the sub-states.

* Common transitions can be aggregated to the
super-state



Hierarchical Statecharts Example
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Concurrent Statecharts
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Statechart Guidelines

e States must represent identifiable situations
or intervals of time.

* Each state should have
— A unique name.

— An exit.

* On flat statecharts, only one state at a time
should be active.



Statechart Guidelines (cont)

e Events and Actions are distinct:

— Events are the cause of transitions
* Something that happens.

— Actions are the effect of transitions
e A command.
* Conditions are boolean values — they must
evaluate to “true” or “false”

* Actions, Activities, and Conditions are
optional; use only where necessary.



Developing Statecharts from use Cases

1. Collect the actions, conditions and results
from a use case description.

2. Develop a preliminary statechart with those

actions and conditions as the events and the
results and the states.

3. Consider any alternative external events not
in the use case.

4. Develop hierarchical and concurrent
statecharts as necessary.



Summary

* Finite state machines are used to model the
dynamic aspects of the problem domain using
statecharts.

e Statecharts consist of Transitions and States

— Events cause Transitions (possibly based on a
condition)
— Actions or activities are caused by transitions.

e Statecharts may be flat, hierarchical, or
concurrent.



