Finite State Machines and
Statecharts

Designing Concurrent, Distributed, and Real-Time Applications with UML
Hassan Gomaa (2001)

Finite State Machines

* Finite state machines are conceptual machines
with a finite number of states.

e State transitions are changes in from one of
these states to another.

Finite State Machine

Optional
Transition State 2

Input > State 1

Optional
Output

A\

Finite State Machines (cont)

e State Machines consist of two basic elements:
— Events: occurrences at a point in time.

— States: recognizable situations that exist over an
interval of time.
 The dynamic aspects of the problem domain
are modeled using finite state machines.

— Typically one Object encapsulates one state
machine.

Statecharts

* |[n UML, state machines are represented in
Statecharts.

e Statecharts may be flat or hierarchical, and
can depict a wealth of information regarding
the expected operation of a system.

Statechart Examples

Account Opened

Regular Withdrawal

Account in Good Standing

Authorized Withdrawal
Authorized Withdrawal m
Overdraft Paid Off Account Overdrath

Deposit/

Account Closed

)

Statechart Examples (cont)

Statechart Examples (cont)

Conditions

e Conditions are represented after ["]
an event with square brackets

Accel [Brake Off]

 Conditions determine which, if
any, state the event transitions v

tO . [Accelerating j

[Down }Aﬁer (Elapsed Time) [Closedown Was Requested]ﬁ

Startup Closedown

[Idle je/\fter (Elapsed Time) [Closedown Not Requested]A[Terminating]

Actions

e Actions associated with a state transition are
shown after the event causing that transition,
separated by a “/”.

v l

[Validating PIN }Th‘rd Invalid PIN / Confiscate Card{ Confiscating j

I

Too Many Actions Clutter Diagrams

Engine Off / Disable *Increse Speed”
< Engine On / Clear Desired Speed
Initial Engine Off Idle
Engine Off
Accel [Brake Off] / Enable
“Increase Speed"” Engine Off / Disable
Aoce.I [Brake Off] / En’able *Resume Cruising
Increase Speed
_ Brake Pressed / Disable
. Cruising ~ "Maintain Speed"
Accelerating Off - \
Brake Pressed / Disable
“Increase Speed”, Select
Desired Speed Brake Pressed / Disable
“Resume Cruising
Resume [Brake Off] /
Enalge . Res:.: e Cancel / Disable
oy “Resume Cruising
Cancel / Disable
“Maintain Speed”
\Acoel / Disable "Resume Cruising”, ReachedCruising /
Enable “Increase Speed” Resuming Disable "Resume Cruising
Crusing®, Enable

\ “Maintain Speed”
cel / Disable *"Maintain Speed”, Enable *Increase Speed"”

LCruisef Disable "Increase Speed", Select Desired Speed, Enable *Maintain Speed”

Activities

Activities actions appear on a states block
using the “Do / Activity” notation.

— Clean up the event transitions

— Prevent unnecessary repetition

vl |

Resuming

‘\

Reached

Do/ Resume Cruising }—— -
Accel k . S| g/ Cruising

Activities Example

Engine Off
fem———Engine On / Clear Desired Speed
Initial Engine Off = Idle
Engine Off
Accel [Brake Off]
Accel [Brake Off]
Accelerating Cruising \% ——Brake Pressed
Off
Q)o / Increase Speed 9 < [—Cancel
\
Brake Pressed
Brake Pressed
Resume [Brake Off]
ancel Engine Off
\ (Resuming A (" Cruising \
iai Reached o
Accel kDo/ Resume Cruising ™ Cuiising %\Do / Maintain Speed J

Accel J J\
Cruise

Entry and Exit Actions

* Entry and Exit actions occur upon entering or
leaving a state.

\&Insufﬂciem Cash / Eject, Display System Down
Down \
] oy After (Elapsed Time) [Closedown Was Requested] \
/ Display System Down
Startup / Closedown /
Display Display
Welcome System Down
Y

J‘ After (Elapsed Time) [Closedown Not Requested) k
/ Display Welcome

Entry and Exit Actions (cont)

* Entry and exit actions can also be displayed as
activities.

(Down) Insufficient Cash / Ejectﬂ

Entry / Display
System Down jeﬂ\ﬁer (Elapsed Time) [Closedown Was Requested]ﬁ

Startup / Closedown /
Display Display
Welcome System Down
Y

(die)
Terminating
Entry / Display —After (Elapsed Time) [Closedown Not Requested] Transaction
Welcome)

Hierarchical Statecharts

* Hierarchies are used to simplify state charts.

— Each sub-state gains the transitions of the super-
state.

— Being in the super-state means being in one and
only one of the sub-states.

* Common transitions can be aggregated to the
super-state

Hierarchical Statecharts Example

Closed Down After (Elapsed Time) \

[Closedown Requested] ~
Startup
Idle After (Elapsed Time)
(Card Inserted [Closedown Not Requestion)
Insufficient Cash
Processing \
Customer
Input
Waiting ﬂ' erminating Transaction \
For PIN
Card Confiscated Terminating
PIN Entered nvalid PIN
i X Card Ejected
Validating PIN Third Invalid PIN
Valid PIN Cancel Ejecting
Waiting for
Customer \
Choice ﬁrocessing Receipt Printed
\ / Transaction g
/ Printing
\ / Transfer OK
Transfer Selected— .’;:::e;; /
Cash Dispensed
Query OK
. a Process /
uery Selected —— Query /
\ Withdrawal OK
Withdrawal Selected— Process

Withdrawal j

~
-

Concurrent Statecharts

T T —————————

¢ When mUIhple SUb' ’ ATM Control bt
states must be active o (mpmsm] :
Superstate |

simultaneously, a i

concurrent statechart |
I Closedown Not
s used. ‘{ Reauested]

Startup Closedown

L

Closedown
Requested

M e e e e e e e . — e — P

e —— —

Statechart Guidelines

e States must represent identifiable situations
or intervals of time.

* Each state should have
— A unique name.

— An exit.

* On flat statecharts, only one state at a time
should be active.

Statechart Guidelines (cont)

e Events and Actions are distinct:

— Events are the cause of transitions
* Something that happens.

— Actions are the effect of transitions
e A command.
* Conditions are boolean values — they must
evaluate to “true” or “false”

* Actions, Activities, and Conditions are
optional; use only where necessary.

Developing Statecharts from use Cases

1. Collect the actions, conditions and results
from a use case description.

2. Develop a preliminary statechart with those

actions and conditions as the events and the
results and the states.

3. Consider any alternative external events not
in the use case.

4. Develop hierarchical and concurrent
statecharts as necessary.

Summary

* Finite state machines are used to model the
dynamic aspects of the problem domain using
statecharts.

e Statecharts consist of Transitions and States

— Events cause Transitions (possibly based on a
condition)
— Actions or activities are caused by transitions.

e Statecharts may be flat, hierarchical, or
concurrent.

