Dynamic Modeling

Chapter 11
Part of Analysis Modeling

Dynamic Modeling

- Addresses the dynamic, or behavioral, aspects of a system.
 - Both Inter- and Intra- object interactions are considered.
 - Intra-object —→Statecharts.
 - Inter-object →Interaction Diagrams
- Produces a Dynamic Model

Dynamic Model

- Includes:
 - Interaction Diagrams
 - Collaboration Diagrams
 - Sequence Diagrams
 - Message Sequence Description
 - Statechart Diagrams (if needed)

Overview of Dynamic Modeling

- Review of Interaction Modeling
 - What the different types of interaction diagrams look like
 - How to choose which to use.
- How to perform Dynamic Analysis in COMET
 - Determining which objects to include in the dynamic model.
 - Comparison of state vs. non-state oriented dynamic analysis.

Object Interaction Modeling

- Objects and Messages are represented on an Interaction Diagram
 - Objects are instances of classes
 - Messages consist Events coupled with the data that accompanies them, or their attributes.
 - message = event (attributes)
 - e.g.: ATM Card Inserted (Card ID, Expiration Date)
 - Messages represent data passed from one object to another.
 - Messages may or may not trigger actions

Collaboration Diagrams

 Collaboration diagrams depict messages going from one object to another.

 Messages should have sequence numbers to indicate order.

Sequence Diagrams

- Sequence Diagrams capture time sequence of interactions between objects.
- Because the diagram depicts the time sequence, message sequence numbers are not necessary, but my be included.
- Note that the lifelines are dashed – we do not determine object lifecycles in the analysis modeling phase.

Collaboration vs. Squence

- Only one or the other is needed.
- COMET prescribes a slight preference for collaboration diagrams.
 - An important part of design modeling is synthesizing the collaboration diagrams – hence collaboration diagrams must be created for all sequence diagrams anyways.
- During the analysis modeling, COMET emphasizes capturing the information passed from one object to another, rather than the action taken when a message arrives.

What Interaction Diagrams Show

- Scenarios of Use Cases
 - A Scenario is a particular path through a Use Case.
 - Alternative paths may be selected based on conditions.
- Generic interaction diagrams show all scenarios.
- Instance interaction diagrams show a single scenario.

Message Labels

- Message labels take the following form:
 - sequence expression: message name (attributes)
 - Sequence Expressions may include:
 - Message Sequence Number
 - Recurrence
 - Iteration
 - Condition
 - Attributes are arguments, data, or parameters sent with the message
- e.g.: 2.6 [Valid]: Valid PIN

Message Sequence Numbering

- Message sequence numbers in COMET consist of:
 - [first optional letter sequence] [numeric sequence][second optional letter sequence]
- e.g.:
 - -A1
 - 1a
 - Use1.3invalid

Message Labeling (example)

Message Sequence Description

- The message sequence description is a narrative describing the interactions on an interaction diagram.
- Typically used to provide additional information that is not easy or appropriate to represent on the interaction diagrams.

Dynamic Analysis

- Determines how analysis model objects interact with each other.
- Begins with a Use Case
 - The sequence of internal interactions started by external inputs defined in a Use Case are "followed" through the system to eventual system output.
- Is Iterative.
 - First objects associated with a use case are identified.
 - Then their interactions are considered and reconsidered.

Non-State Dependent Dynamic Analysis

1. Determine interface object(s).

2. Determine internal objects.

3. Determine object collaboration.

4. Consider alternative sequences.

Non-State Dependent Dynamic Analysis (example)

Use Case Name: View Workstation Status

Actor: Factory Operator

Summary: Factory operator views the status of one or more

workstations

Precondition: Factory operator is logged in.

Description: Factory operator requests view of the status of one or more factory workstations. The request may be made on demand, or by subscription to receive notification of status changes.

Alternatives: Factory workstation is down. Warning message is displayed.

Postcondition: Workstation status has been displayed.

Non-State Dependent Dynamic Analysis (example, cont)

State-Dependant Dynamic Analysis

- 1. Determine Objects and Interactions.
 - Determine the interface object(s).
 - 2. Determine the state-dependant control object(s).
 - 3. Determine other internal objects.
 - 4. Determine object collaboration.
- 2. Execute the Statechart.
- 3. Consider Alternative Sequences.

Executing the Statechart

- 1. For each state transition caused by a message, determine all the actions that result from the change in state and the objects that execute the identified actions and activities.
- 2. For each triggered or enabled object, determine the messages generated and their destinations.
- Show the determined internal and external messages on both the statechart and the interaction diagram.

State-Dependent Dynamic Analysis (banking example)

Determine the main sequence:

State-Dependent Dynamic Analysis (banking example, cont)

Execute the statechart

State-Dependent Dynamic Analysis (banking example)

Determine Alternative Sequences

State-Dependant Dynamic Analysis (banking example)

Refine the statechart to include alternative

sequences.

Summary

- Dynamic Analysis determines how objects interact to accomplish Use Cases.
- The Dynamic Model consists of:
 - Interaction Diagrams (Collaboration or Sequence)
 - Statechart Diagrams (if necessary)
 - Message Sequence Descriptions

Summary (cont)

- Dynamic Analysis can be state or non-state dependent.
- Dynamic Analysis consists of:
 - Determining external and internal objects.
 - Determining object collaborations.
 - Considering alternative sequences.