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ABSTRACT

In this paper we propose a cross-layer approach for information and resource sharing between the routing, transport and application-level components in tactical networks. Our approach is different than traditional cross-layer strategies for MANETs in that it focuses on the interaction of each layer (MAC and NET) directly with the overlying applications (or middleware), as opposed to the traditional interactions between neighbor layers in the OSI model. In this work, ‘applications’ are abstracted by a data-aware communication framework that resides on top of the transport layer and interacts will all sub-layers. The paper describes the requirements for cross-layer integration, and introduces our proposed approach. A proof-of-concept implementation is presented for the Agile Computing Middleware and the OLSR routing protocol.
INTRODUCTION

Tactical networks are generally characterized as mobile ad hoc networks under policy and resource constraints. Mobile Ad hoc networks have been the focus on much attention in the recent years for a wide range of applications. 
Tactical military operations such as those envisioned by the Army’s Future Combat Systems (FCS) program are likely to rely heavily on these types of environments, particularly at the edge of the networks.
Differently to their wired counterparts, tactical wireless networks are highly dynamic, which often prohibits the traditional session-based hard QoS allocation. For instance, in wired networks the allocation of resources for different data flows can be established (or reserved) at admission time. In tactical networks such strategies are rarely applicable due to relatively frequent changes in network topology and link conditions. 
Quality of service, in such environments, cannot rely solely on allowing or denying admission of flows and applications to the communications resource; they dependent on providing continuous feedback to applications for data rate adjustment and prioritization. 
In this paper we propose a cross-layer approach specially designed for communications in the battlefield where the policy-bound allocation of computation and communications resource is paramount for the success of the mission.
The proposed framework differs from traditional cross-layer approaches in that it focuses on application level requirements and the interface between applications and the network and MAC layers, as opposed to the neighbor interactions normally found in traditional cross-layer strategies. 

The paper first discusses some of the characteristics and requirements for battlefield communications infrastructures. An application level middleware (the Agile Computing Middleware) will be then introduced as a mechanism for opportunistic resource allocation for data processing and data transmission in the network. 
We then introduce and discuss a proof-of-concept implementation of the proposed cross-layer design for the agile computing middleware, concluding the work with some implementation details and future work. 
Communications in the Battlefield
Complex military missions involving coalition forces, robotic support units, remote sensor beds, and autonomous vehicles require underlying communication infrastructures that are flexible, efficient, and robust in order successfully operate in combat. 

The capacity to efficiently generate, process and share information horizontally between peer nodes in the battlefield is paramount in tactical environments. It realizes the notion of information-centric warfare that has been highly promoted by FCS. 

The Army’s FCS program envisions a system of systems, connecting a number of lightweight operation units through a tactical communications infrastructure. The goal is to empower the combat forces with information and agile equipment, as oppose to massive combat tanks that are relatively slow and expensive to transport and operate.

The reduction in heavy armor and in lieu of agility and flexibility will be compensated by superior intelligence and information awareness directly available to the soldier and vehicles in the field. 
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Figure 1. The Army’s Future Combat Systems

In this new environment (Figure 1), the communications network is the central linking point for all units, becoming one of the most important and critical elements in the system. 
The communications infrastructure must be flexible enough to support high capacity data links between operational units as well as highly dynamic ad hoc environments at the edge of the network. 

In general, the main characteristics generally accepted for the communications infrastructure in tactical environments are the following:

· Mobile Ad hoc Network: Mobile Ad hoc networks (MANET) are characterized by dynamic (or mobile) hosts connecting each other in ad hoc fashion (with no support of any fixed infrastructure) to build local area networks. Tactical networks might leverage, but not depend, on any fixed network infrastructure to operate efficiently.

· Resource Efficient: Most tactical networks rely on several hosts that are battery operated or highly constrained in resource capabilities. Efficient and balanced resource utilization is fundamental.

· Adaptive: Tactical networks must adapt to changes in operation goals or operation tempo. For instance, while monitoring the environment, the network should minimize resource utilization to maximize its lifetime however; during combat the network should prioritize performance, in lieu of resource usage.

· Resilient: The communications infrastructure must survive to arbitrary node or link losses, degrading gracefully as resources expire. Self reorganization and self-healing are important features for tactical networks.

· Data Centric: The primary goal of tactical networks is to share information and control messages. The focus is on the data, as opposed to the network. 

· Secure: Security is paramount but it will not be addressed in this work. It is assumed that an underlying security protocol is in place at the link level, preventing unauthorized (or compromised) nodes from joining the network.

· Policy Constrains: Tactical networks must support and enforce policy constraints for both resource utilization and information release between nodes and applications. This is a fundamental requirement for supporting coalition operations in both military and civilian scenarios. 

The primary type of traffic in tactical networks is sensor and control data. These two types of traffic have very different characteristics and requirements. Sensor data is usually unreliable, tolerating some levels of packet loss in lieu of low levels of latency and jitter (variance of latency). Other specialized types of traffic, such as control commands, depend on reliable communications with packet retransmission and strict sequencing, usually requiring the use of specialized communications libraries for tactical networks (Suri, Brashaw et al, 2003; Suri, Carvalho et al., 2003). 

Data traffic, although more tolerant in general is usually much more demanding on the network resources than control data. First, because there’s usually a much higher volume (in these types of environments) of sensor data than any other type of data, and second because while control traffic is point to point and intermittent (referring here to the control of an unmanned vehicle, for instance), data traffic is usually continuous and concurrently distributed often from one sensor to multiple clients, with different requirements, policies and resource constraints (Carvalho and Breedy, 2002).

Although a relatively large number of data-aware communications middleware and overlay networks have been proposed in the recent years, an increasing number of researchers today tend to agree that a cross-layer approach is likely to be the best option for tactical environments. 
Related Work
Cross-layer approaches for Mobile Ad hoc Network are, in general, based on short term adaptation (and state reporting) between neighboring protocol layers.
Most implementations are based on variations of QoS protocols inherited from the wired networks and still utilize some of the notions of signaling and coordination for resource reservation. Furthermore, the bulk of the research in the area is focused on the interplay between the physical, medium access control and network layers, without much attention to application-specific requirements and its capabilities not only for rate-adaptation but also for changes in prioritization and high-level actions.
The basic goal of these cross-layer strategies is to monitor and detect short term changes in channel (or competing traffic) conditions to notify upper layers about new QoS conditions. Applications, in this model, are generally expected to adjust data rates accordingly when notified by a neighboring layer that current service expectations are not longer available. 
As illustrated by Goldsmith (2002), the actual adaptation and reporting between layers is generally done after local layer adaptations are no longer possible (or cost effective). For instance, changes in signal interference plus noise power ratio (SNIR) on ad hoc links tend to vary in the much faster rate (in the order of microseconds) than changes in topology, which usually in the order of seconds. The different time scales at each layer usually implies that local adaptation within each layer generally occurs first (and more frequently) than adaptation between layers. 

Protocols like dRSVP (Mirhakkak et al., 2001), for instance, provide per-flow end-to-end bandwidth guarantees for a range requirements (as opposed to a specific requirement like in RSVP). In dRSVP ‘routers’ exchange bandwidth reservation details through a signaling protocol and the flow is either denied access or dropped if channel availability becomes insufficient. Once bandwidth resources are allocated, the application is responsible for enforcing the data rate and for periodically refreshing its allocation state.

Signaling for short term resource reservation is also used by the SWAN Protocol (Ahn, 2002). SWAN, like dRSVP is fully decentralized and best effort. It makes no assumptions about underlying QoS capabilities form the MAC layer. The signaling in SWAN is intended for flow admission and the cross-layer nature of the protocol lies in the fact that MAC level packet delay information is shared and used for estimating medium access contention. After a flow is admitted in SWAN, the protocol uses the packet’s explicit congestion notification flag (ECN) to notify that requested services are no longer supported for that flow. 

TIMELY (Bharghavan et. al., 1999) is another cross-layer architecture that provides link layer scheduling, resource reservation and adaptation, as well as priority-aware transport protocol that self-regulates flow based on feedback from the lower layers. TIMELY was initially proposed for cell-based wireless network, and help create the basis for subsequent ad-hoc specific architecture and protocols with similar capabilities like Spine (Sivakumar et al., 1998) and CEDAR (Prasun, 1999). 
The Agile Computing Middleware

More recently, the Agile Computing framework (Suri, Carvalho et al. 2003) was introduced in the context of FCS. The framework provides opportunistic resource exploitation in dynamic environments and extended capabilities for both data streaming and point-to-point communications in tactical environments.
The Agile Computing Middleware works in conjunction with a policy framework (KAoS – Bradshaw, 1997) and provides two access API’s for applications, the Mockets (Suri et al., 2005; Tortonesi et al., 2006) and the FlexFeed API (Carvalho et al, 2002; Carvalho et al. 2005).
A CROSS-LAYER DESIGN FOR AGILE COMPUTING
In its current implementation, the Agile Computing Framework utilizes message flood for service registration and lookup and well as for the distribution of resource information. Even though the framework relies on efficient zone-based protocols for data distribution to reduce overhead, the state and control messages constitute a direct overhead on the communications network.
The coordination overhead is illustrated in figure 2 for two neighbor nodes. In the figure, the ‘MANET’ block represents the combined data link and routing layers at each node. The physical node is represented by the block at the bottom of the diagram and includes both the physical layer of the communications stack as well as the hardware associated node platform. 
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Figure 2 – The Coordination overhead of the Agile Computing Infrastructure (ACI). 
Both the MAC and NET layers exchange periodic messages to discover and maintain network topology and routing information. The nature of the traffic at that level depends on the characteristics of the network and routing protocol and is usually independent of any overlaying middleware or applications (with the exception of some optimizations used in reactive protocols to leverage from data packets for route maintenance). Baheni (2004) also proposed an application-level multicast protocol that provided overlay routing for data distribution, using topology information obtained form the network protocol.
As illustrated in figure 2, the coordination protocol used by applications or communications middleware usually depended on additional messages exchanged at the application (or transport) levels to operate. This is the case, for example, of some of the UDP-based signaling protocols for QoS management and application-layer switching strategies. 
In the case of the Agile Computing Framework, state information about resource availability and coordination messages are also exchanged at the transport layer as additional messages to the route maintenance messages. 
The motivation for a cross-layer strategy for instance, for the Agile Computing framework, lies in the potential benefit of sharing information and messaging mechanisms between the middleware and the lower layers in the communication stack. 
Differently than most cross-layer approaches in the literature, we propose a strategy that allows not only the coordination between layers, but also the interface between the overlaying data-aware communications protocol and the underlying MAC and NET components. 
The approach is illustrated in figure 3, and essentially consists on the design and implementation of interfaces between the communications middleware and the network (and MAC) layers. 
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Figure 3 – Cross Layer Design for the ACI 
More precisely, our cross-layer implementation provides four core capabilities for the overlaying agile computing middleware.
The primary objective of the proposed cross-layer strategy is to enable a communications middleware such as the ACI to directly interface with the underlying network infrastructure to provide four core capabilities: a) to share information between network and middleware, b) to propagate middleware-related information as part of network control messages, c) to influence routing (and MAC scheduling) decisions to better support the middleware and d) to proactively manipulate network resources to improve communications.
Sharing Information between Network and Middleware
Sharing information between layers is possibly the most common goal of cross-layer strategies. Generally, lower layers will essentially notify upper layers of changes in minimum QoS capabilities as necessary. 
The middleware benefits from lower level information such as the set of neighbor nodes, the link quality and reliability to each neighbor. This information can be used by the middleware, for instance, to identify candidate peer nodes for service deployment or to influence group formation at that level.  
Node mobility and other platform-related information such as remaining battery power and processing capabilities are also used by the middleware for resource allocation. 
Information can also be exposed in the opposite direction, that is, from the middleware to the communications layer. Such information can include, for instance, the communications profile of overlay applications (i.e. estimated bandwidth utilization, and traffic pattern). This information can be used by the communications layer to better allocate resources both at the Network and MAC levels.
At the network level, for instance, the routing protocol will utilize different link weights based on the expected duration of the session (as reported by the middleware) for that specific traffic. Such weights will give preference to more stable links for longer sessions, while maintaining the different routing criteria for other applications. 

At the MAC level, packet scheduling will be modified to prioritize sessions based on application and flow requirements, even after flow admission. 
The specific characteristics of the protocols involved also play an important role on the level of the information shared and the extent to which it can be helpful. For instance, link-state routing protocols can take advantage of traffic profile of specific flows reported by the middleware to select alternative routes for the flow. Similar capabilities might not be as easily achieved in other types for protocols. 
Propagating Middleware-related Information as Part of Network Control Messages 
Another core capability provided as part of the cross-layer implementation is the use of communications messaging mechanism for exchanging middleware-level information. 
The objective is to utilize route discovery and maintenance messages at the network level to distribute application-specific state and control information. This technique reduces the overall number of messages and (in general) the overall bandwidth usage.
Routing messages can also be utilized for service registration and discovery, following an approach previously proposed by Garcia-Macias J. and Torres D. (2005). The cross-layer interface for the agile computing middleware fully supports the model.
Influencing Routing/MAC decisions to Better Support Middleware
The notion of influencing routing and MAC layer decisions based on application requirements is another capability provided by the proposed framework.

This is fundamentally different than having the communications protocol to leverage from application level information (such as traffic profile) to temporary change their behavior for specific applications or flows. The goal here, instead, is to allow the middleware for enforce changes in the procedures followed by the underlying applications.

Consider, for example, the case of military coalition operations where application-level policies are deployed at run time to constraint the distribution of a specific data flow through the network. 

Without supporting overlay routing, the middleware can essentially push the constraint down to the routing layer who will ensure the compliance when forwarding data packets for that specific flow.
Another example of enforcing changes in routing protocols based on application constraints is illustrated in figure 4.
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Figure 4 – Routing data through resource rich nodes. 

In figure 4, the middleware requests specific data to be routed through nodes with a minimum level of CPU availability (for instance), which is enforced by the underlying routing protocol. 
Proactively Manipulating Resources to Improve Communications
The last core capability that we have included in the design of the framework was the capability to allow the middleware to proactively (and autonomously) manipulate network resource to enable or improve communications.

The assumption is that there are mechanisms for topology control available to the framework and applications. Such mechanism might include access to mobile nodes that can be re-positioned in the scenario to support immediate communication needs. 
Figure 5 shows an example of resource manipulation to minimize communication cost. In the configuration shown in the left side, the most cost-effective routing solution would be to flow the data from S to N1 to N2 to C. However, if the node N3 is moved to a new position as shown in right side of the figure, a more cost effective solution would be to route the data from S to N3 to C. 
This solution is more cost effective even when the cost to move the resource is included in the solution cost. Other examples can be used to show resource manipulation in order to restore lost communications or to increase bandwidth when needed.
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Figure 5 – Proactive Resource Manipulation 
The autonomous control of mobile nodes is constrained by policies, which are enforced by the framework as a whole and also independently at each node. In previous tests and demonstrations, we have shown this capability working in full compliance with competing tasks by following the required priorities and policy constraints.

Design and IMPLEMENTATION details
Our current proof of concept implementation is based on an open-source version of the OLSR (Clausen and Jacquet, 2003) protocol provided by OLSR.ORG.

OLSR is a link state protocol that utilizes the concept of multipoint relay nodes (MPR) to efficiently support flooding in the network. Flooding is utilized in OSRL to propagate changes in network topology and link state through the network. Topology updates are shared through a special message (TC Message). 
At the local (one-hop) level, the protocol utilizes periodic broadcast messages (HELLO messages) for topology discovery and link quality estimation. 
The reference OLSR implementation has a modular structure that supports customized plugins for creating and handling generic messages. 
A specialized plugin (ACI Plugin) was designed support the interfaces with the Agile Computing Framework. The plugin is shown in figure 6, in connection with the other components developed to support the ACI framework. 

Messages send to the plugin are automatically scheduled by OLSR to be appended to standard routing messages (Hello and TC). The structure of the OLSR messages is such that several external messages can be attached to the same packet and distributed through the network. 
By default, each message sent via the plugin is broadcasted to all nodes in the network. The broadcast, however, follows the same mechanism used for route maintenance and update, based on the TC message. If messages cannot be efficiently (timing wise) appended to the TC packet, they will be sent independently by OLSR. 
To facilitate access to the ACI plugin, an interface called OLSRMessageAdapter was designed and implemented. The component has a persistent local TCP connection to the ACI Plugin and exchanges information messages with the plugin via this connection, using a simple binary protocol. 

The ACI Middleware, as well as other applications can have access to the OLSR Message adapter through direct method calls. The adapter is written in Java. Figure 6 shows the interaction between OLSR, the ACI plugin, the java adapter, and different applications.
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Figure 6 – The OLSRMessageAdpater 
The API provided by the Adapter allows applications to send messages and to register a callback mechanism in order to be notified when new messages arrive. 

The beaconing (Hello Messages) mechanism implemented as part of OSLR protocols allows each node to estimate its direct neighbor list and the quality and symmetry of links to each neighbor. This information is exposed to the middleware and used for resource allocation and planning.
If operating over a routing protocol that does not maintain a neighbor list, the information could be extracted directly form the MAC layer if necessary. 
For link state protocols in particular, the topology information available at each node includes the list of nodes that are part of the network, neighborhood information for each one of the nodes, as well as neighbor link quality details for the connections between a node and its neighbors.

To take advantage of this information, a second OLSR plugin (the Topology plugin) that allows to query network topology information has been written. This plugin can be accessed via TCP as well, and it will report about the topology of the network (this is, the nodes, the neighbors of each node, and a measurement of the link quality between them). On top of this, the list of routing decisions (routing table) made by OLSR is also published by the plugin. As soon as OLSR detects a change in the network (topology, link state or quality, etc) the plugin will pick up on the changes and it will issue an update.
Conclusions and FUTURE WORK
In this paper we have discussed the design and of a cross-layer interface for the Agile Computing Middleware. The approach is, in principle, applicable to support applications in general or other communication middleware, however, several of the capabilities envisioned in our designed were envisioned to support (or complement) the Agile Computing Framework.
We have a working implementation that is currently being integrated with the framework for tests and demonstrations. In isolation, initial tests have indicated that the approach reduces traffic overhead and enables the envision capabilities, however, more tests are necessary for a more quantitative and rigorous analysis. 
As part of our future work we are also exploring alternative mechanisms for topology control utilizing, for instance, dynamic transmission power to quickly adapt to fast changes in topology, availability or traffic requirements. 
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