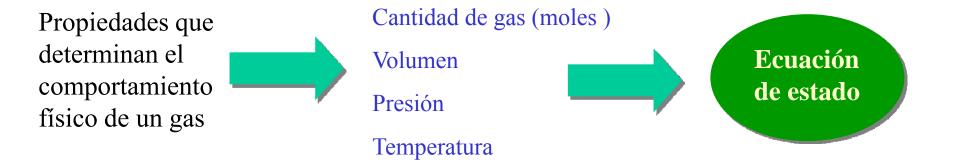


TEMA 4

EL ESTADO GASEOSO


INDICE

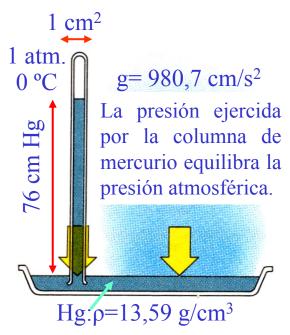
- **4.1 Conceptos preliminares.**
- **4.2 Gases ideales o perfectos.**
- 4.3.- Teoría cinética.
- 4.4 Propiedades de los gases en la teoría Cinético-molecular.
- 4.5 Gases reales. Ecuación de estado.

4.1 Conceptos Preliminares

Características físicas de los gases

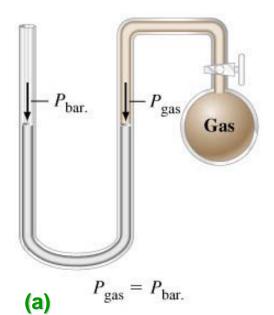
- > Se expanden ilimitadamente. Toman la forma y el volumen de los recipientes.
- Constituyen el estado más compresible de la materia.
- > Se mezclan cuando están en el mismo recipiente.
- > Tienen densidad mucho más baja que los líquidos y sólidos.
- **Ejercen presión sobre su entorno.**

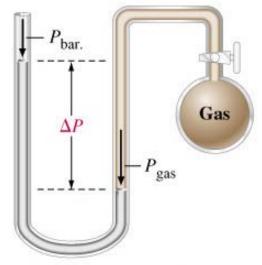
CONCEPTO DE PRESIÓN


Unidades de Presión

$$P = \frac{F}{S}$$

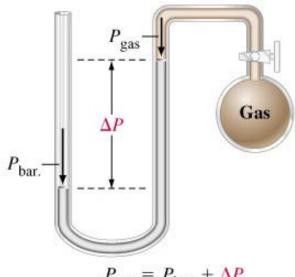
Presión de un líquido


$$P = \frac{F}{S} = \frac{m.g}{S} = \frac{V.\rho.g}{S} = \rho.g.h$$


El barómetro de Torricelli

CONCEPTO DE PRESIÓN

Manómetros empleados para medir presiones de gases



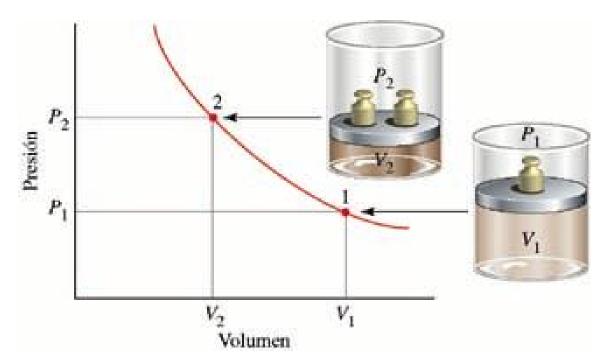
Presión del gas igual a la presión atmosférica

(b)
$$P_{gas} = P_{bar.} + \Delta P \\ (\Delta P > 0)$$

Presión del gas mayor que la presión atmosférica

(c)
$$P_{\text{gas}} = P_{\text{bar.}} + \Delta P \\ (\Delta P < 0)$$

Presión del gas menor que la presión atmosférica

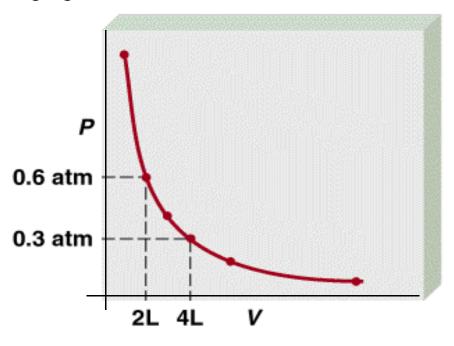

4.2

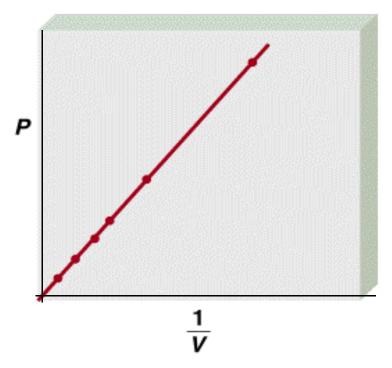
Gases Ideales o Perfectos

Las leyes elementales de los gases.

• Ley de Boyle (1662)

Relación entre Volumen y Presión a Temperatura constante




PV = constante

Ley de Boyle (1662)

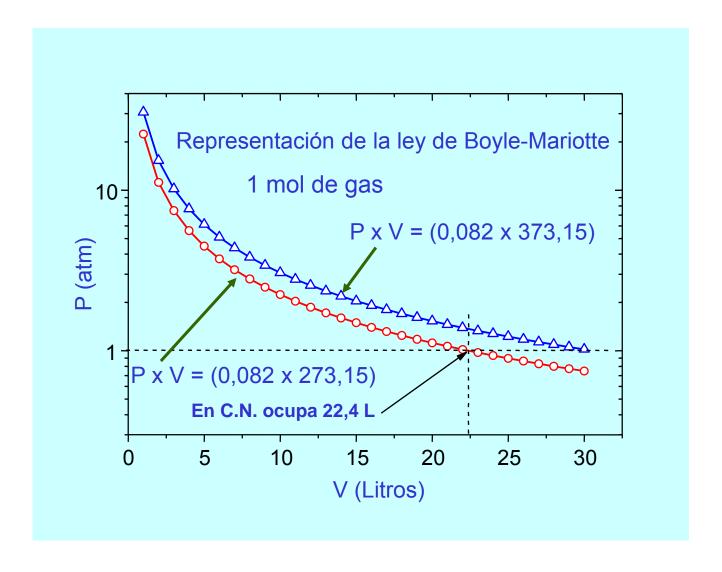
Relación entre Volumen y Presión a Temperatura constante

Para una cierta cantidad de un gas a una T = cte, el Volumen del gas es inversamente proporcional a su Presión

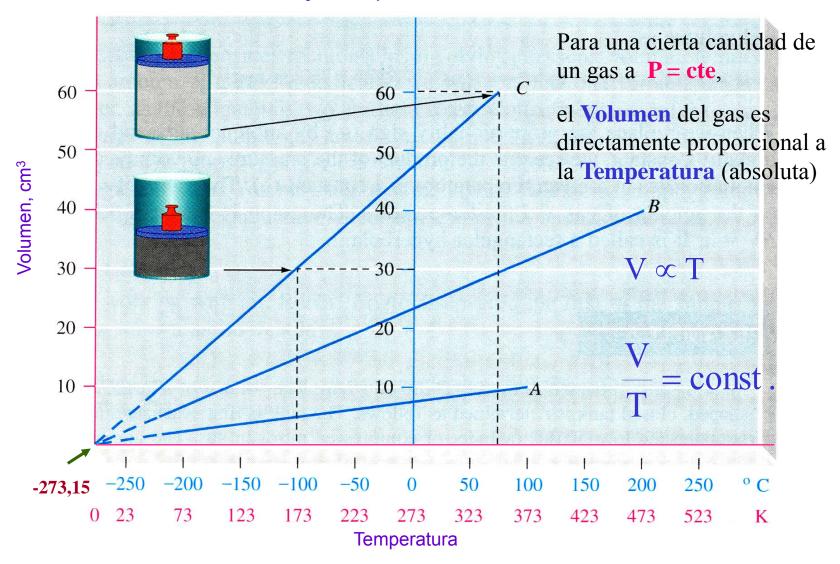
A t^a constante:

 $P \alpha 1/V$

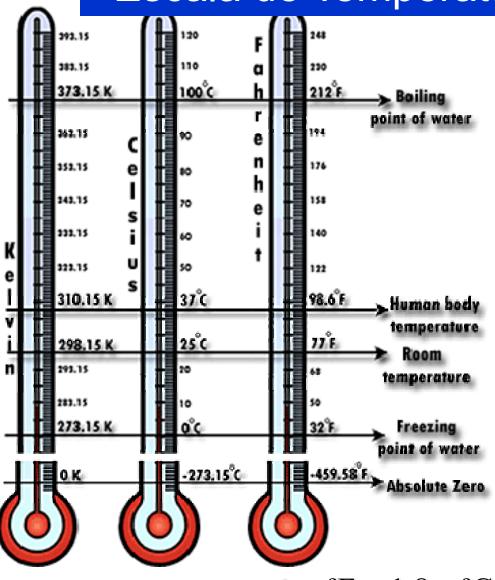
 $P \times V = constante$


$$P_1 \times V_1 = P_2 \times V_2$$

Relación entre el volumen y la presión de un gas. Ley de Boyle.


$$P_1V_1 = P_2V_2$$
 $V_2 = \frac{P_1V_1}{P_2} = 694 L$ $V_{depósito} = 644 L$

Ley de Boyle-Mariotte (Isotermas PV)



Ley de Charles y Gay - Lussac (1802)

Relación entre Volumen y Temperatura a Presión constante

Escala de Temperaturas

Condiciones normales de temperatura y presión:

P = 1 atm = 760 mm Hg

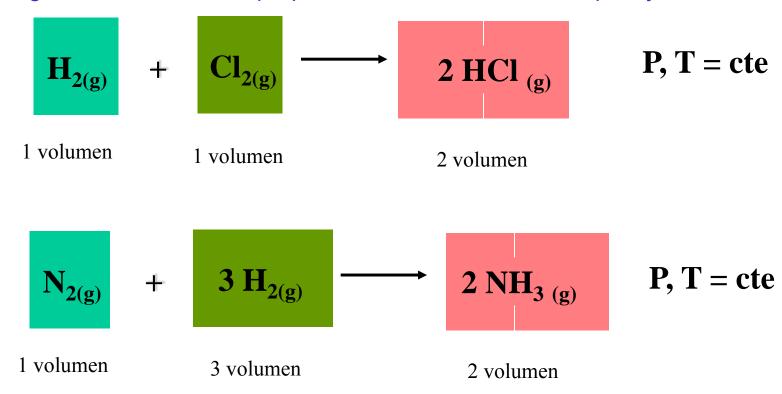
T = 0 C = 273,15 K

$$^{\circ}F = 1.8 \times ^{\circ}C + 32$$

El volumen de un gas aumenta linealmente con la temperatura

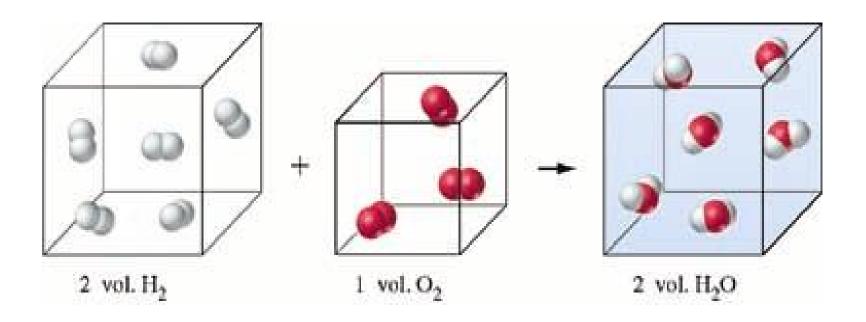
V=
$$V_{(0^{\circ}C)}(1 + \alpha t)$$
 ($\alpha = 1/273,15$ para todos los gases)

$$t = \frac{1}{\alpha} \left(\frac{V}{V_0} - 1 \right)$$

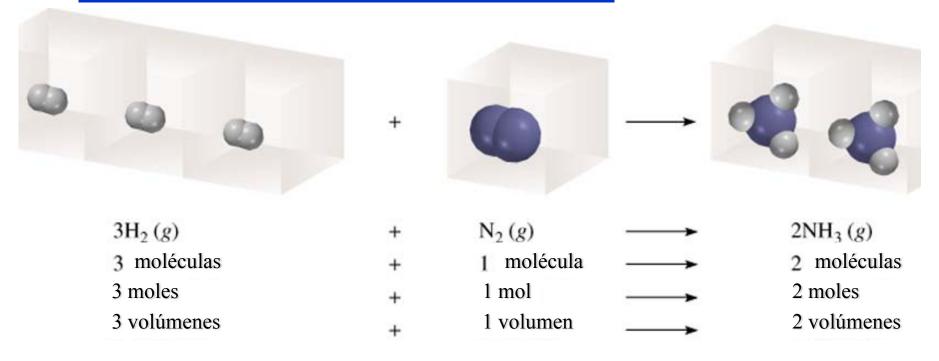

T (K) =273,15 + t (°C)
$$\frac{V_1}{V_2} = \frac{(1/\alpha_1) + t_1}{(1/\alpha_1) + t_2} = \frac{273,15 + t_1}{273,15 + t_2}$$

$$\frac{V_1}{V_2} = \frac{T_1}{T_2} \iff \frac{V}{T} = \text{const.}$$

El volumen varía linealmente con la temperatura en las escalas Celsius y Kelvin, pero sólo es directamente proporcional a la temperatura en la escala Kelvin.


Ley de GAY – LUSSAC

"Los gases reaccionan en proporciones de volumenes simples y definidos".



Ley de GAY – LUSSAC

"Los gases reaccioan en proporciones de volumenes simples y definidos".

Ley de Avogadro

A t^a y presión constantes: V es α al número de moles (n)

$$V_1/n_1 = V_2/n_2$$

"A la misma presión y temperatura volúmenes iguales de todos los gases contienen el mismo número de moléculas".

Ecuación de estado para gases ideales

Ley de Boyle: $V\alpha = \frac{1}{P}$ (a Ty n constantes)

Ley de Charles: $V \alpha T$ (a n y P constantes)

Ley de Avogadro: $V \alpha n$ (a P y T constantes)

$$V\alpha \frac{nT}{P}$$

$$V = \text{constante } \times \frac{nT}{P} = R \frac{nT}{P} R = \text{constante de gases}$$
Ec. de Clapeyron
$$P.V = n.R.T$$

$$P = \frac{RT}{V} \sum_{i} n_{i}$$

La presión depende del número de partículas y no de su naturaleza.

Constante de los gases

$$PV = nRT$$

$$R = \frac{PV}{nT} = 0,082057 \text{ atm L mol}^{-1} \text{ K}^{-1}$$

$$= 8,3145 \text{ m}^{3} \text{ Pa mol}^{-1} \text{ K}^{-1}$$

$$= 8,3145 \text{ J mol}^{-1} \text{ K}^{-1}$$

$$= 2 \text{ cal mol}^{-1} \text{ K}^{-1}$$

DENSIDAD DE LOS GASES

$$n = \frac{m}{M}$$

$$PV = \frac{m}{M} RT \longrightarrow \frac{m}{V} = \rho = \frac{MP}{RT}$$

$$M = \frac{mRT}{PV}$$

Determinación de una masa molar utilizando la ecuación de los gases ideales.

El propileno es un producto químico importante. Se utiliza en la síntesis de otros productos orgánicos y en la obtención de plásticos. Un recipiente de vidrio pesa 40,1305 g limpio, seco y hecho al vacío; 138,2410 g cuando se llena con agua a 25,0 °C (δ = 0,9970 g/cm⁻³); y 40,2959 g cuando se llena con gas propileno a 740,3 mmHg y 24,0 °C. ¿Cuál es la masa molar del propileno?

Estrategia:

Determine V_{recipiente}. Determine m_{gas}. Utilice la ecuación del gas.

Determine V_{recipiente}:

$$V_{\text{recipiente}} = m_{\text{H}_2\text{O}}. d_{\text{H}_2\text{O}} = (138,2410 \text{ g} - 40,1305 \text{ g}). (0,9970 \text{ g cm}^{-3})$$

= 98,41 cm³ = 0,09841 L

Determine m_{gas}:

$$m_{gas} = m_{lleno} - m_{vacío} = (40,2959 g - 40,1305 g)$$

= 0,1654 g

Utilice la ecuación del gas:

$$PV = nRT$$
 $PV = \frac{m}{M}RT$ $M = \frac{mRT}{PV}$

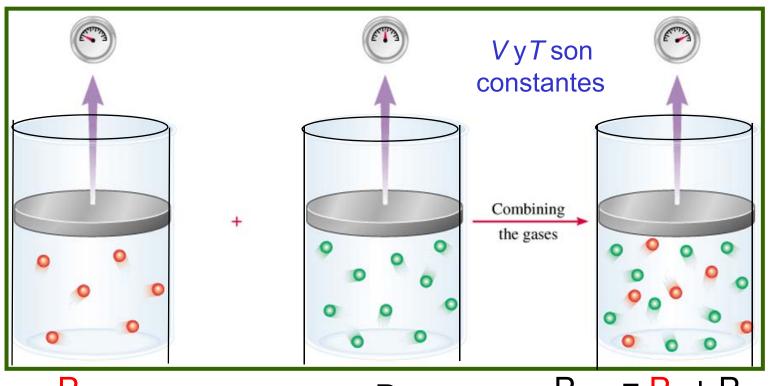
$$M = \frac{(0,1654 \text{ g})(0,08206 \text{ atm L mol}^{-1} \text{ K}^{-1})(297,2 \text{ K})}{(0,9741 \text{ atm})(0,09841 \text{ L})}$$

$$M = 42,08 \text{ g/mol}$$

Utilización de la ecuación de los gases ideales en los cálculos estequiométricos de las reacciones.

La azida de sodio, NaN_3 , se descompone a alta temperatura obteniéndose $N_2(g)$. Con los dispositivos adecuados para iniciar la reacción y retener al sodio metálico que se forma, esta reacción se utiliza en los sistemas de seguridad de bolsa de aire (air-bag). ¿Qué volumen de $N_2(g)$, medido a 735 mmHg y 26 °C, se obtiene cuando se descomponen 70,0 g de NaN_3 ?

$$2 \text{ NaN}_3(s) \rightarrow 2 \text{ Na(I)} + 3 \text{ N}_2(g)$$


Determine los moles de N₂:

$$n_{N_2} = 70 \text{ g N}_3 \square \frac{1 \text{ mol NaN}_3}{65,01 \text{ g N}_3/\text{mol N}_3} \square \frac{3 \text{ mol N}_2}{2 \text{ mol NaN}_3} = 1,62 \text{ mol N}_2$$

Determine el volumen de N_2 :

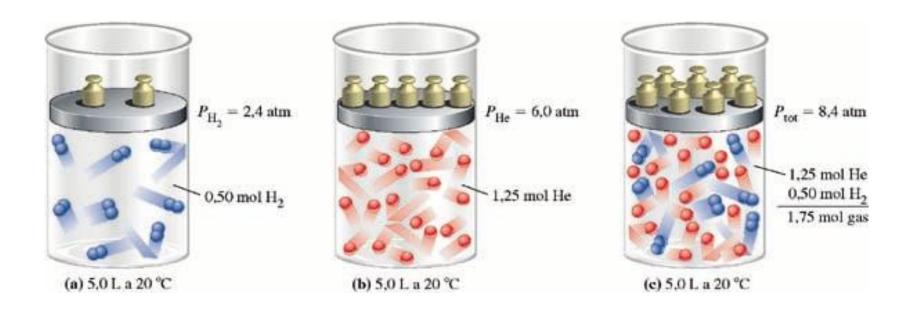
$$V = \frac{nRT}{P} = \frac{(1,62 \text{ mol})(0,08206 \text{ atm L mol}^{-1} \text{ K}^{-1})(299 \text{ K})}{\{(735 \text{ mm Hg}) \frac{1,00 \text{ atm}}{760 \text{ mmHg}}\}}$$
$$= 41,1 \text{ L}$$

Ley de Dalton de presiones parciales

Combinando los gases

 P_1

 P_2


$$P_{total} = P_1 + P_2$$

$$\mathbf{P} = \sum_{\mathbf{i}} \mathbf{p}_{\mathbf{i}}$$

La presión total ejercida por una mezcla de gases es la suma de las presiones parciales de sus componentes

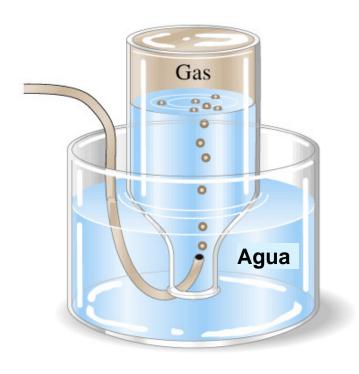
$$\mathbf{x_A} = \frac{n_A}{n_T} = \frac{P_A}{P_T} = \frac{V_A}{V_T}$$

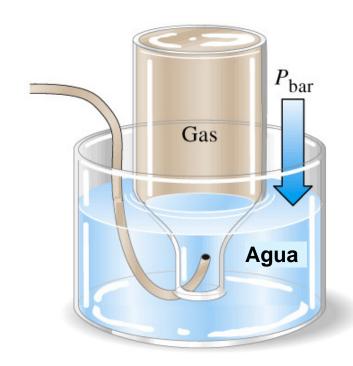
Ley de Dalton de presiones parciales

Ley de Dalton de presiones parciales

$$P_{tot} = P_a + P_b + \dots$$

$$V_a = n_a RT/P_{tot}$$


$$V_a = n_a RT/P_{tot}$$
 y $V_{tot} = V_a + V_b + ...$


$$\frac{V_a}{V_{tot}} = \frac{n_a RT/P_{tot}}{n_{tot}RT/P_{tot}} = \frac{n_a}{n_{tot}}$$

Recuerde:
$$\frac{n_a}{n_{tot}} = \chi_a$$

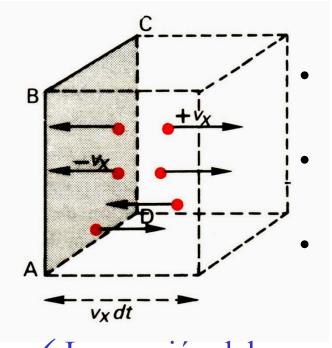
$$\frac{P_a}{P_{tot}} = \frac{n_a RT/V_{tot}}{n_{tot} RT/V_{tot}} = \frac{n_a}{n_{tot}}$$

CAMARA NEUMATICA

$$P_{tot} = P_{bar} = P_{gas} + P_{H_2O}$$

4.3

Teoría Cinético-molecular


TEORÍA CINÉTICO - MOLECULAR

Hipótesis de la teoría cinética

- Las partículas son masas puntuales en movimiento constante, lineal y al azar.
- Las partículas distan mucho unas de otras.
- Las colisiones son rápidas y flexibles.
- No se ejercen fuerzas entre las partículas.
- La energía total permanece constante.

Presión: valoración de las fuerzas de colisión

Energía cinética traslacional,

$$e_k = \frac{1}{2} mu^2$$

Frecuencia de las colisiones,

$$v = u \frac{N}{V}$$

Impulso o transferencia de momento,

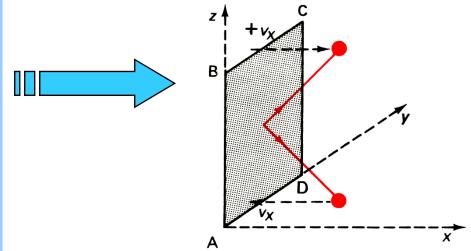
$$I = mu$$

✓ La presión del gas se debe a la fuerza de interacción con las paredes, P= F/S

• Presión proporcional al impulso por la frecuencia.

$$P \propto \frac{N}{V} mu^2$$

Presión y velocidad molecular

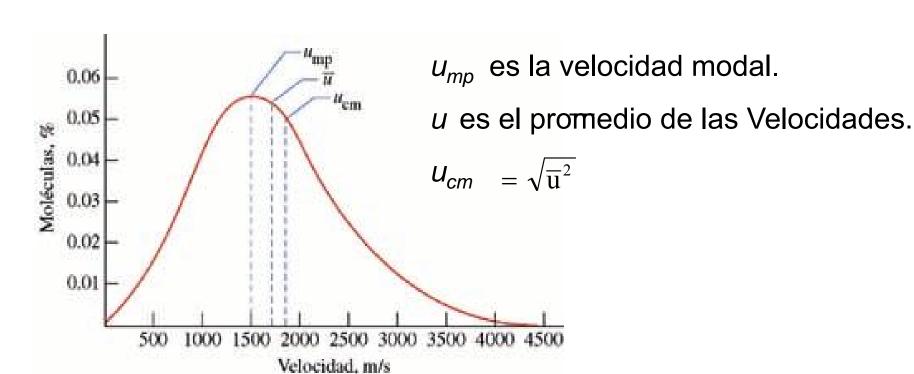

Se introduce $\overline{V_x^2}$ como el valor medio de $\overline{V_x^2}$

$$\overline{v_x^2} = \frac{\sum N_v v_x^2}{N}$$

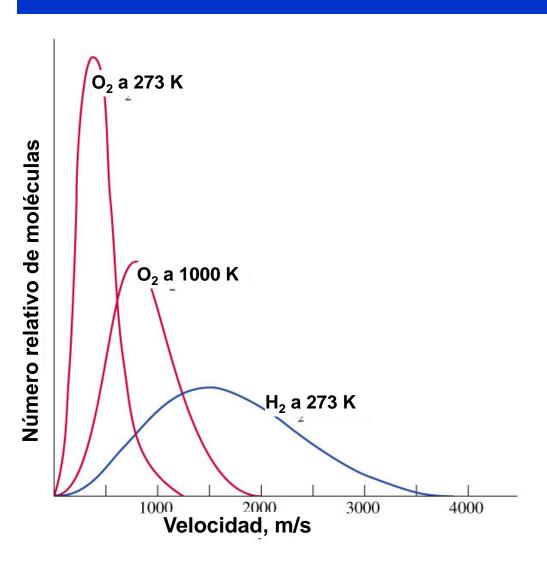
$$v^2 = v_x^2 + v_y^2 + v_z^2$$

$$\overline{v^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2}$$

$$\overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2} = \frac{\overline{v^2}}{3} \text{ (simetria)}$$


$$P \propto \frac{N}{V} m u^2 \qquad P = \frac{1}{3} \frac{N}{V} m \, \overline{u}^2$$

$$P = \frac{1}{3} \frac{N}{V} m \overline{u}^2$$


Presión y velocidad molecular

Los sistemas tridimensionales nos $P = \frac{1}{3} \frac{N}{V} m \overline{u}^2$ llevan a:

$$P = \frac{1}{3} \frac{N}{V} m \, \overline{u}^2$$

Distribución de las velocidades moleculares

$$PV = \frac{1}{3} N_A m \overline{u}^2$$

$$PV = RT$$

$$u_{cm} = \sqrt{\frac{3RT}{M}}$$

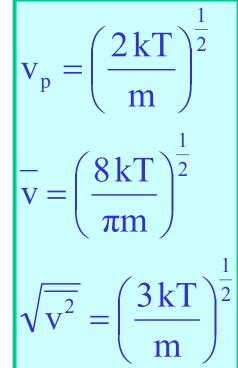
Gases ideales: Interpretación cinética de la temperatura

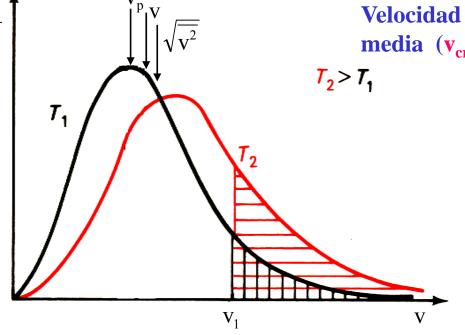
$$PV = \frac{1}{3} N_A m \bar{u}^2 = \frac{2}{3} N_A (\frac{1}{2} m \bar{u}^2)$$

$$RT = \frac{2}{3} N_A \bar{e}_c$$

$$\overline{e}_{c} = \frac{3}{2} \frac{R}{N_{A}} (T) = \frac{3}{2} \left(\frac{R}{N_{A}} \right) T = \frac{3}{2} kT$$

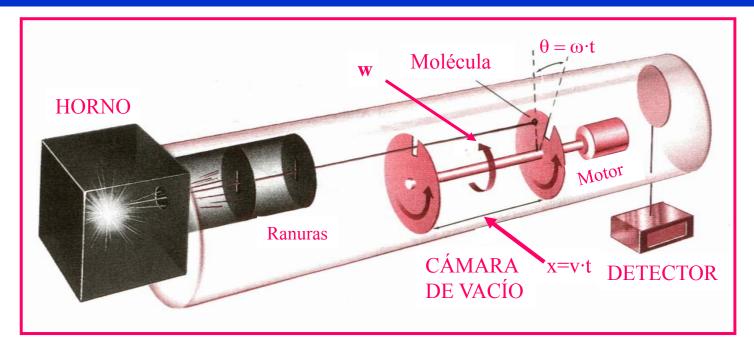
La energía cinética media de traslación de una molécula de gas ideal es directamente proporcional a la T


Cte de Boltzmann


Distribución de velocidades

Velocidad media

Velocidad cuadrática media (v_{cm})



La v_{cm} es la raíz cuadrada del promedio de los cuadrados de las velocidades de todas las moléculas que hay en la muestra.

Distribución de velocidades moleculares

Aparato para estudiar la distribución de velocidades moleculares

Filtro de velocidades

$$x = v \cdot t_{\text{paso}}$$

$$\theta = \omega \cdot t$$

$$t = \frac{\theta}{\omega} \Rightarrow t_{\text{paso}} = \frac{2\pi}{\omega}$$

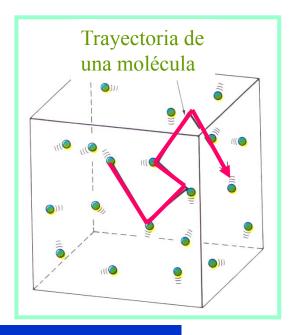
$$x = v \cdot \frac{2\pi}{\omega}$$

4.4

Propiedades de los gases en la Teoría cinético-molecular

Propiedades de los Gases

Difusión: movimiento o mezcla gradual de sustancias distintas en virtud de sus propiedades cinéticas.


La velocidad neta es proporcional a la velocidad molecular.

Eliminación de la barrera H2 Los gases (a) empiezan a mezclarse Gases mezclados Vacío Apertura de orificio (b)

Efusión: escape por un orificio

Aunque las velocidades son elevadas, 10³ m·s⁻¹, la aleatoriedad del movimiento hace que los desplazamientos netos sean pequeños.

Difusión / Efusión: Ley de Graham

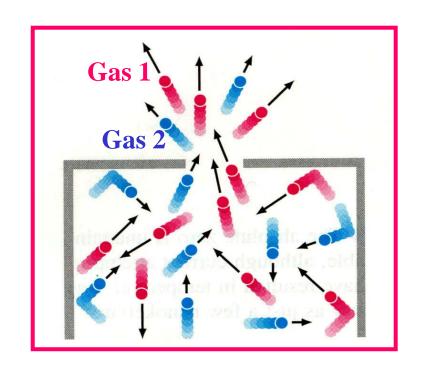
 $\sqrt{\text{relación de masas molares}} = \text{relación de } / \text{tiempos de efusión}$

* velocidade s moleculare s

* velocidade s de efusión

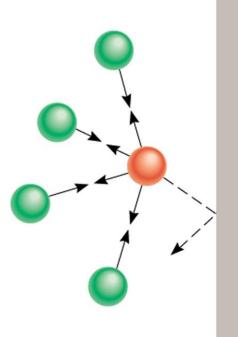
* distancias recorridas

*cantidad de gas difundido


Efusión a través de un orificio

Las moléculas con mayor velocidad, efunden más rápido.

Dos gases diferentes (1 y 2) que están a la misma T y P


$$\frac{v_{cm(1)}}{v_{cm(2)}} = \frac{\sqrt{\overline{v_1^2}}}{\sqrt{\overline{v_2^2}}} = \sqrt{\frac{3 RT/M_1}{3 RT/M_2}} = \sqrt{\frac{M_2}{M_1}}$$

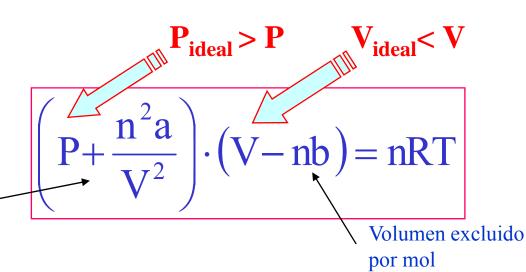
4.5

Gases reales: Ecuación de Estado

Ecuación de van der Waals

Interacción entre moléculas:

Los choques non son elásticos.



J. Diderik van der Waals

- La fuerza de interacción con las paredes es menor.
- Las moléculas ocupan un volumen no despreciable.

Fuerzas intermoleculares atractivas

Fuerzas intermoleculares de atracción

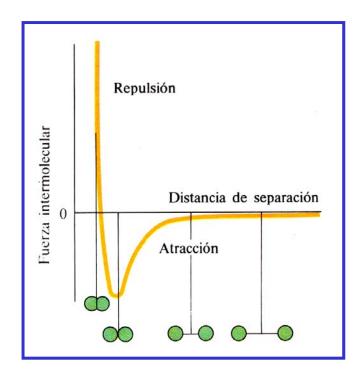
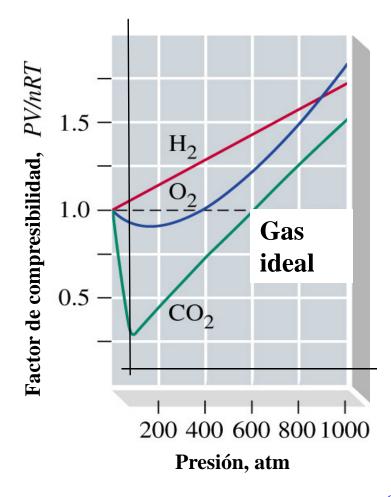


Diagrama de fuerzas intermoleculares en función de la distancia intermolecular l

Constantes de Van der Waals


Gas	a (L²·atm·mol-²)	b (L·mol-1)
H_2	0,2444	0,02661
N_2	1,390	0,03913
O_2	1,360	0,03183
CO	1,485	0,03985
CO_2	3,592	0,04267

Para 1 mol de gas:

Factor de compresibilidad

$$\left(P + \frac{a}{V^2}\right) \cdot \left(V - b\right) = RT \Longrightarrow \frac{PV}{RT} = \frac{V}{V - b} - \frac{a}{RTV}$$

Comportamiento ideal
$$P \to 0 \Rightarrow V \to \infty \Rightarrow \begin{cases} \frac{a}{RTV} \to 0 \\ \frac{V}{V - b} \to \frac{V}{V} = 1 \end{cases} \frac{PV}{RT} = 1$$

Desviacións "positivas"

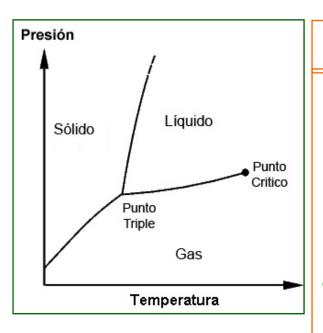
A fuertes presiones y altas temperaturas

$$\left\{ \frac{a}{RTV} << \frac{V}{V-b} \right\} \\
\left(\frac{pV}{RT} \right) \cong \frac{V}{V-b} > 1$$

Desviacións "negativas"

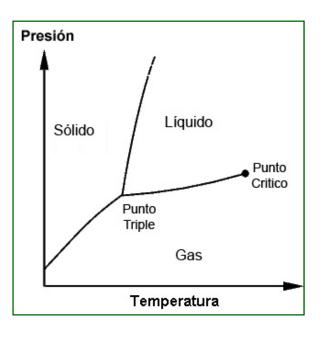
A presiones moderadas

$$\frac{V}{V-b} = \frac{1}{1-(b/V)} \cong 1 + \frac{b}{V}$$


$$\frac{PV}{RT} = 1 + \left(b - \frac{a}{RT}\right)\frac{1}{V}$$

$$\left[T^{\uparrow} \Rightarrow \frac{a}{RT} \to 0 \Rightarrow \frac{PV}{RT} > 1\right] \longrightarrow ALTAS T^{AS}$$

$$T_{\downarrow} \Rightarrow b - \frac{a}{RT} \approx -\frac{a}{RT} \Rightarrow \frac{PV}{RT} < 1 \implies BAJAS T^{AS}$$


Parámetros críticos T_c, P_c

Temperatura crítica (T_c), es la T^a por encima de la cual un gas no puede ser licuado, independientemente de la Presión aplicada.

Sustancia	T _c , K	P _c , atm	
Gases permanentes (no pueden ser licuados a 298 K)			
H_2	33,3	12,8	
N_2	126,2	33,5	
O_2	154,8	50,1	
CH_4	191,1	45,8	
Gases no permanentes (pueden ser licuados a 298 K)			
CO_2	304,2	72,9	
HCl	324,6	82,1	
NH_3	405,7	112,5	
SO_2	431,0	77,7	
H_2O	647,3	218,3	

Constantes de Van der Waals

Tc, Pc, Vc

Las Constantes **a** y **b** pueden ser calculadas a partir de los **parámetros critico**: Tc y Pc

$$P_C.V_C = \frac{3}{8}R.T_C$$

$$a = 3.P_C N_C^2$$

$$\boldsymbol{b} = \frac{V_C}{3}$$

Fin de Capítulo