
SPATIAL DATABASE MODELING PICTOGRAMMIC LANGUAGES

Yvan Bédard, Suzie Larrivée

Dept of Geomatics Sciences

Centre for Research in Geomatics

Canada NSERC Industrial Research Chair in Geospatial Databases for Decision

Support

Laval University

Quebec City, Canada

Telephone: 1-418-656-2131

Fax: 1-418-656-7411
{suzie.larrivee, yvan.bedard}@scg.ulaval.ca

SYNONYMS

Spatial modeling language extension, Spatio-temporal modeling language

extension, Perceptory extensions.

DEFINITION

“Spatial databases” consist of large groups of data structured in a way to represent the

geographic features of interest to the users of a system. Spatial database models are

schematic representations of these data. Database models are created to design and

document the system, to facilitate communication and to support programming. They

are created using CASE tools (computer-assisted software engineering). CASE tools

support schema drawing, dictionaries and code generation. Database schemas are

typically represented with a graphical language such as UML (Unified Modeling

Language; http://www.uml.org).

“Database models” can represent (1) users' real-life views of the data of interest, (2)

developers' views of the potential organization of these data for a family of

technologies, or (3) their final implementation on a specific platform. For example, in

the standard Model-Driven Architecture (MDA) method (http://www.omg.org/mda/),

these three levels of models are respectively called CIM (computation-independent

model), PIM (platform-independent model) and PSM (platform-specific model). In

other methods, they may be called conceptual, logical and physical models as well as

analysis, design and implementation models.

“Pictograms” are symbols aimed at facilitating modeling. Different sets of pictograms

have been proposed. This chapter presents those used by the CASE tool Perceptory

(http://sirs.scg.ulaval.ca/perceptory) since they are the most widely used, they were

designed to allow developers to keep using their method, and they were thoroughly

tested as implementations of UML stereotypes. In Perceptory, they aim at hiding the

complexity of geometric primitives in CIM and PIM models. They can serve other

purposes as well and have been implemented in other CASE tools [14].

HISTORICAL BACKGROUND

In the field of GIS, pictograms were first proposed in 1989 by Bedard and Paquette

[6] to simplify how Entity-Relationship (E/R) models depicted the geometry of

cartographic features. It was then called "Sub-Model Substitution” technique as the

main goal was to remove from the spatial database model those geometric primitives

with their data elements and relationship (considered of no interest to the user) and to

replace them by simple symbols showing only the information of interest to the users

http://www.uml.org/
http://www.omg.org/
http://sirs.scg.ulaval.ca/perceptory

(i.e. the features’ shape). This first solution was tested in several projects and

enhanced over time to lead to the development of Modul-R [4,5], the first spatio-

temporally extended E/R which led to Orion, the first GIS-compatible CASE tool in

1992 [5]. This first solution has influenced several researchers afterwards. Examples

of methods or tools using pictograms for spatial databases include Perceptory [1,3]

which is used in over 30 countries, Software Development Process Model with

Objecteering [see A, 14], MADS [see B, 17], CONGOO [16], UML-Geoframe with

ArgoCASEGEO [10], and STER [see C, 21].

In 1996, Modul-R pictograms were revisited to integrate three paradigms: object-

orientation (OO), plug-in (module, blade, cartridge) and a pragmatic symbiotic

approach [3]. Object-orientation allowed for more expressive power and was first

tested with UML in its pre-release days. The plug-in approach led to define the

pictograms and their syntax as a module, i.e. a specialized language designed to

extend standard languages (e.g. UML, E/R, English). This allowed for enriching one's

modeling language and tool rather than requiring to adopt new ones. For instance, in

addition to Perceptory, these pictograms have been used with commercial and open-

source CASE tools such as Oracle Designer, Objecteering and others while being also

used to describe spatial integrity constraints, to compare database semantics and as

commercial user-interface components. With regards to the symbiotic approach, it

came from cognitive studies and pragmatics lessons resulting from several projects

with practitioners, including very complex ones. It helped to find a better balance

between human abilities, language requirements, database design methods and

commercial software constraints. Practical projects clearly indicated the need to better

support unexpected complex situations, to simplify the pictograms along with their

syntax, and to better balance the content of the graphical schema with the ontological

content of the dictionary (i.e. simpler schemas, increased use of natural and formal

languages in the dictionary). This was a departure from the trend of that period to rely

increasingly on graphical depictions. Such novel approach and the arrival of UML led

to developing Perceptory. This approach also goes beyond the leading tendency to

perceive "modeling" solely as a schema-building exercise while in fact it is not; a

schema without clear and complete semantics is meaningless and its robustness

cannot be validated. Accordingly, good spatial database modeling becomes an

ontological exercise. For example, Perceptory provides specialized spatial and

temporal sections in its dictionary (as can be added to other CASE tools). In the

remaining of this chapter, we present the scientific fundamentals of modeling spatial

databases with pictograms, using examples from the UML-based Perceptory CASE

tool.

SCIENTIFIC FUNDAMENTALS

“Pictograms” aim at supporting the expression of any feature's spatial and spatio-

temporal properties into a consistent manner that is compatible with various human-

oriented languages (ex. UML, Entity-Relationship, English, French).

“Syntax rules” dictate the way to combine and position pictograms in a model or

document. These rules also dictate how to use special characters (0-9 N ,). Properly

combining pictograms, with or without characters, makes it possible to express

complex cases of geometry and spatio-temporality, namely: facultative, mandatory,

alternate, aggregate, multiple, and derived.

A “pictogrammic expression” includes one or several pictograms which are

positioned in a precise manner with pertinent digits according to a syntax. Such a

pictogrammic expression completely describes the spatial, temporal or spatio-

temporal properties of either (1) a feature, (2) where and when an attribute value is

valid within an object geometry or existence, or of (3) a relationship between features.

For example, in Perceptory, the simple expression is made of only one pictogram

and represents a simple 1D geometry in a 2D universe. Similarly, the expression

represents the same geometry in a 3D universe while the expression adds

thickness to this geometry. On the other hand, the expression has a different

meaning from the previous ones and from the expression or from the

expression 0,N. In a similar manner, the simple expression represents one

instant, the expression represents one period of time and more complex temporal

and spatio-temporal expressions can be made.

Grouping pictograms and syntactic rules commonly used together allows one to form

a specialized graphical language called “PVL” (Plug-in for Visual Languages). A

PVL, as introduced in [3], allows extending a modeling language with a tested method

that is compatible with other PVLs of the same family if needed. For example, one

may decide to use only a small group of Perceptory pictograms to make a 2D spatial

PVL (i.e. a language to depict plane geometries of geographic features) while later on,

if needed, use a larger group that make a 3D spatio-temporal PVL. A pictogrammic

expression is sometimes called a PVL expression.

The pictograms high level of abstraction facilitates the making of database models,

reports, specifications, spatio-temporal integrity constraints, user interfaces, and

similar tasks of a system development workflow. They hide the complexity inherent

to the description of geometric and temporal primitives and relationships as well as

implementation and standard-related issues. In particular, they facilitate the building,

editing, communication and validation of spatio-temporal database models as well as

their translation into efficient data structures. In spite of such translation rules, the

PVL are independent from commercial software and numerous standards.

The pictograms were first created for spatial database modeling and are best described

in such a context. Accordingly, the present chapter describes the pictograms

implemented as UML stereotypes in Perceptory object class model. In such a context,

the PVL allow the analyst or designer to describe the spatial and temporal properties

of the elements depicted in an object class schema. Perceptory pictograms support 0D,

1D, 2D and 3D geometries for objects located in 2D or 3D universes (see table 1).

Supported temporalities are 0D (instant) and 1D (period) (see table 2). Supported

combinations are simple, complex (aggregate), alternate (exclusive OR), multiple

(AND), spatio-temporal and hybrid (combinations of any of the above) (see tables 3, 4

and 5). Supported minimum multiplicities include facultative (0), mandatory (1),

specific number and many (N) while maximum multiplicities include the three latter.

Special cases are "any possibility”, "not yet defined" and "complicated", the latter

pointing to a textual description in the repository (when easier to read). All geometries

and temporalities can be indicated as measured or as derived from other attributes,

objects, relationship using calculations, spatial or temporal analysis. No geometry or

temporality is also accepted. Pictogrammic expressions may describe object classes,

association classes, attributes and may be used within operations.

 2
D

 s
p

a
ce

3
D

 s
p

a
ce

Examples of cases

0D geometry hydrants when they are all represented by points

1D geometry
 road segments when they are all represented by lines

 electric poles when they are all represented by vertical lines

2D geometry
 lakes when they are all represented by polygons

 walls when they are all represented by vertical plans

3D geometry buildings when they are all represented by solids

Table 1: simple pictogrammic expressions for geometry.

Examples of cases

0D temporality Existence of accidents; traffic flow of a road segment

1D temporality Existence of a building; duration of its commercial use;

duration of its ownership by a given person

Table 2: simple pictogrammic expressions for temporality.

Geometry Examples

of syntax

Examples of cases

(complex)

Aggregate

geometry

(simple)

1,N

Hydrographic networks composed of 1D rivers and 2D

lakes (i.e. aggregate of different geometries)

Some municipalities may include several 2D geometries

such as islands (i.e. aggregate of similar geometries)

Alternate geometry

(on same line)

Buildings having a 0D shape if area < 1 hectare

OR a 2D shape if area > 1 hectare (Exclusive OR)

Facultative

geometry
0,1

Buildings in database may have no geometry if area <

0.2 hectare, or a 0D shape if area > 0.2 hectare

Multiple geometry

(on different lines)

Every municipality has a 2D shape AND a OD location

(ex. downtown)

N.B. same syntax for 2D and 3D pictograms

Table 3: syntax for advanced 2D and 3D spatial pictogrammic expressions.

Temporality Examples

of syntax
Examples of cases for feature existence and states

Alternate

temporality

(on same line)

 Forest fires lasting several days OR 1 day (if temporal

resolution is 1 day); water level data varying

continuously when opening/closing the dam OR

remaining stable for a period once a level is reached

Facultative

temporality

0,1 Houses in database may need NO construction and

demolition dates IF area < 0.2 hectare

Multiple

temporality

(on different lines)

Hurricane existence defined by a date of beginning and

a duration for some purposes, AND by a unique date of

maximum peek for other purposes. Buildings

commercial value considered stable for the whole year

for tax purposes but as being valid only the day when

the building was assessed for market analysis purposes.

Spatio-temporality Position of a moving vehicle. The temporal pictogram

affects the spatial pictogram on its left

N.B. Selecting between or depends on the temporal granularity defined into the

repository for each class, attribute and geometry.

Table 4: syntax for advanced temporal and spatio-temporal pictogrammic

expressions.

 Table 5: syntax and pictograms for special cases

Examples of the use of pictogrammic expressions for UML object classes are

presented hereafter. Figure 1 describes an accident as a an instantaneous event located

positioned as a point. Figure 2 shows a case where users want to keep information

Derived geometry

or temporality

“italic pictogram”

Municipality centroids derived from their polygons; 3D

buildings derived from 2D buildings with number of

floors; duration of commercial use derived from permits

Hybrid expression

(combination of

any pictos above)

1,N A set of individual cyclists continuously moving

during a race or forming a group that changes its

size during the race

Default

multiplicity

If no multiplicity is written immediately after a pictogram, the

1,1 multiplicity is implied

Any possibility

“wildcard pictogram” meaning no predefined shape or

temporality, and no restriction on the geometry or

temporality

Complicated

Better explained textually in the dictionary than using a

complicated PVL expression in a schema. Replaces a

long hybrid expression if desired.

Not yet defined

During the process of designing a database, we may

know we’ll need a geometry or temporality, but not

which one (this will be replaced by regular pictograms)

about the existence of commercial buildings (construction and destruction), about the

evolution of their commercial value (values, period of validity) and of its polygonal

representation if it is enlarged or modified. Figure 3 illustrates a case of aggregated

complex geometry while figure 4 shows cases of simple and alternate geometries. At

last, figure 5 shows a case of multiple geometry where the first pictogram expresses

the fact that every building is represented by simple polygon at large scales and the

second line of pictograms indicates that some (but not all) buildings may have a

second geometry, either a point or a line, depending on their size, for small scale maps

(usually to properly place symbolic representations).

Figure 1: Example of simple pictogrammic expressions for the geometry and

existence of a UML object class Accident.

Figure 2: Example of a spatio-temporal pictogrammic expression, a temporal

expression for the existence of the UML object class and of another one to keep

track of the evolution of one attribute.

Figure 3: Example of a complex aggregate geometry for the Airport object class,

that is an aggregate of points, lines and polygons (Data from ministère des

Ressources naturelles et de la faune du Québec)

Figure 4: Example of a simple geometry pictogrammic expression (where each

instance is represented by one line) and of an alternate geometry (where small

buildings are represented by a point and large ones by a polygon) (Data from

ministère des Ressources naturelles et de la faune du Québec)

From a UML point of view, these pictogrammic expressions are implemented as

stereotypes (a formal way of extending UML) and are built on-the-fly in Perceptory.

Using such pictogrammic expressions has also proved to be useful to model spatial

multidimensional databases (or datacubes) as used in spatial data warehousing and

SOLAP (Spatial On-Line Analytical Processing). These datacubes pictogrammic

expressions include datacube , data dimension , member , measure and

are compatible with the previous spatial and temporal pictograms. They are all

supported by Perceptory.

Figure 5: Example of a multiple geometry pictogrammic expression where, at

large scale (ex. 1:1000), buildings are represented by a polygon and at small scale

(ex. 1:20 000), they are represented by a point, a line or nothing (Data from

Research and Development Defence Canada and from ministère des Ressources

naturelles et de la faune du Québec)

KEY APPLICATIONS

Pictogrammic languages, if sufficiently expressive and usable, can serve several

purposes. The following paragraphs further describe the key application, i.e. spatial

database modeling, and other applications of interest.

Using pictogrammic languages for spatio-temporal database modeling

Modeling databases for GIS applications has always posed several challenges for

system analysts, system developers as well as for their clients whose involvement into

the development of such a project is not a familiar endeavor. Used with well-known

modeling techniques, pictogrammic expressions help to meet these challenges [1, 17,

16, 10, 21] and are commonly used in different methods, for example in relational

database design (ex. UML relational stereotypes [15]). Extending CASE tools and

modeling methods in such a way allows analysts and designers to work at a higher

level of abstraction for the first steps of a spatial database project. As presented in

figure 6, once high-level models completed, they can be translated into more technical

models which are closer to implementation such as presented in Chapter D. Such

multi-level approach is typical of good software engineering methods, for example:

 The Object Management Group (OMG) Model-Driven Architecture (MDA)

having three levels of models: Computation Independent Model (CIM),

Platform Independent Model (PIM) and Platform Specific Model (PSM);

 Zachman Framework having business or enterprise model, system model

and technology model (also called semantic, logical and physical models);

 Rational Unified Process (RUP) having domain model, analysis model,

design model and implementation model.

Figure 6: examples of CIM, PIM and PSM levels of abstraction of the MDA

method where information encapsulated in the higher levels using pictograms

are expanded in lower levels.

Since the pictograms are aimed at facilitating modeling by being closer to human

language than typical modeling artefacts, they are primarily used in high-level

models. Regarding the MDA method, pictogrammic expressions are more widely

used for CIM than for PIM and PSM:

 CIM: “A computation independent model is a view of a system from the

computation independent viewpoint. A CIM does not show details of the

structure of systems. A CIM is sometimes called a domain model and a

vocabulary that is familiar to the practitioners of the domain in question is

used in its specification.”[13]

 PIM: “A platform independent model is a view of a system from the platform

independent viewpoint. A PIM exhibits a specified degree of platform

independence so as to be suitable for use with a number of different platforms

of similar type.” [13]

 PSM: “A platform specific model is a view of a system from the platform

specific viewpoint. A PSM combines the specifications in the PIM with the

details that specify how that system uses a particular type of platform.” [13]

Furthermore, since pictograms are not tied to a specific natural language, they

facilitate the translation of database models. For example, in Canada, several schemas

and repositories are available in English and French. Figure 7 shows such French and

English schemas that are synchronized thru the same repository and pictograms. The

use of formal ISO-19110 labels (in blue) further facilitates communication while the

use of pictograms facilitates automatic GIS code generation and bilingual reporting.

Figure 7: Example of common pictograms in a French and an English CIM

synchronized for a same spatio-temporal database using Perceptory multi-

standard and multi-language capabilities.

At the CIM level, pictogrammic expressions are intuitive and independent of domain

ontologies and technology-oriented standards. No technology artefacts nor

standardization elements must appear unless they are useful and intuitive. When the

CIM is well defined, it can be translated and enriched to produce lower-level models

semi-automatically. Then, technology-oriented artefacts and standard-based elements

replace the pictogrammic expressions. For example, in Figure 6, the CIM evolves in a

PIM where the geometry is expressed according to ISO/OGC. Then, the PSM shows

the structure of two shapefile needed to implement Building Points and Building

Areas.

In addition to hiding the technical complexities of GIS and Universal server database

engines, using pictogrammic expressions also hides the intricacies of international

standards such as ISO/TC-211 and OGC. For example, ISO jargon doesn't express

directly all possible geometries (ex. alternate and facultative geometries) and they are

not cognitively compatible with clients' conceptual view who assumes a topologically

consistent world (ex. GMPoint vs TPNode, GMCurve vs TPEdge, GMSurface vs

TPFace, Aggregate vs Multi).

Using pictogrammic expressions to define spatial integrity constraints

Spatial integrity constraints can also be defined efficiently with pictogrammic

expressions. For example, in figure 8, the upper window shows a user interface for the

definition of spatial integrity constraints between two object classes, with or without

considerations to specific attribute values. The lower window shows a report showing

the defined spatial integrity constraints. The last window shows an example of using

pictogrammic expressions in a 3x3 e-relate matrix.

Figure 8: Examples of pictogrammic expressions to define topological constraints

between two object classes (upper left), to print them in a report (lower left) and

to describe them in an extended ISO e-relate 3X3 matrix.

Additional usages of pictogrammic expressions: software user interfaces, reports

and semantic proximity analysis.

Pictogrammic expressions are regularly used in a text to express the spatiality and

temporality of concepts. They have been used in reports, data dictionaries and data set

specifications. They were also used for semantic proximity analysis [9] and integrated

in a commercial package (JMap SOLAP, Figure 9).

Figure 9: JMap SOLAP interface using pictogrammic expressions.

FUTURE DIRECTIONS

Over the last two decades, different pictogrammic language have emerged to improve

the efficiency of systems analysts and to improve the quality of spatial database

design. The language presented in this chapter was the first such language and has

become the most widely used one, not only within Perceptory but also in other CASE

tools and in diverse applications as it is downloadable font

(http://sirs.scg.ulaval.ca/YvanBedard/english/others.asp). Such languages will likely

evolve in two major directions. First, they should further expand and be tested to

accommodate the most recent spatial database trends, that is spatial datacube

structures such as those existing in data warehousing and SOLAP applications.

Second, as they can be translated into ISO and OGC primitives [8], official adoption

of such a language should be put forward to improve interoperability between spatial

application database schemas, between ontologies and other documents.

CROSS REFERENCES

A. Spatio-Temporal Model Driven Architecture Enrichment

http://sirs.scg.ulaval.ca/YvanBedard/english/others.asp

B. Spatio-Temporal and Multiple-Perception Extensions

C. Spatio-Temporal Database Concepts and Constructs: Towards a Spatio-

Temporal Entity Relationship Model

D. Spatio-Temporal Model with ISO 191xx Standards

RECOMMENDED READING

1. Bédard, Y, Larrivée, S., Proulx, M-J., Nadeau, M.: Modeling Geospatial

Databases with Plug-Ins for Visual Languages: A Pragmatic Approach and the

Impacts of 16 Years of Research and Experimentations on Perceptory. In: S.

Wang et al. (Eds.): Conceptual Modeling for Advanced Application Domains.

Lecture Notes in Computer Science, Vol. 3289, Springer-Verlag, Berlin

Heidelberg New York (2004) 17–30

2. Bédard Y, Proulx MJ, Larrivée S, Bernier E (2002) Modeling Multiple

Representation into Spatial Datawarehouses: A UML-based Approach. ISPRS

WG IV/3, Ottawa, July 8-12.

3. Bédard Y (1999) Visual Modelling of Spatial Database towards Spatial PVL and

UML, Geomatica, 53(2), 169-185

4. Bédard Y, Caron C, Maamar Z, Moulin B, Vallière D (1996) Adapting Data

Model for the Design of Spatio-Temporal Database. Comp. Env. and Urban

Systems, 20(l) 19-41.

5. Bédard Y, Pageau J, Caron C (1992) Spatial Data Modeling: The Modul-R

Formalism and CASE Technology. ISPRS Symposium, Washington, August 1-14

6. Bédard Y, Paquette F (1989) Extending entity/relationship formalism for spatial

information systems, AUTO-CARTO 9, April 2-7, Baltimore 818-827

7. Bédard Y, Larrivée S (1992) Développement des systèmes d’information à

référence spatiale: vers l’utilisation d’ateliers de génie logiciel. CISM Journal

ACSGC, 46(4) 423-433

8. Brodeur, J., Bédard, Y., Proulx, MJ.: Modelling Geospatial Application Database

using UML-based Repositories Aligned with International Standards in

Geomatics, ACMGIS, November 10-11, Washington DC, (2000) 36-46

9. Brodeur, J., Y. Bédard, G. Edwards & B. Moulin, 2003, Revisiting the Concept of

Geospatial Data Interoperability within the Scope of Human Communication

Processes, Transactions in GIS, Vol. 7, No. 2, pp. 243-265.

10. Filho, J.L., V.D.F. Sodre, J. Daltio, M.F. Rodrigues Junior, V. Vilela (2004). A

CASE Tool for Geographic Database Design Supporting Analysis Patterns.

Lecture Notes in Computer Science, Vol. 3289, Springer Berlin/ Heidelberg,

pp.43-54.

11. Fowler, M.: UML 2.0, CampusPress (2004) 165 p.

12. Frankel, D. S., Harmon, P., Mukerji, J., Odell, J., Owen, M., Rivitt, P., Rosen, M.,

Soley, R., M. (2003) The Zachman Framwork and the OMG’s Model Driven

Architecture. Business Process Trends, Whitepaper.

13. Miller, J. & Mukerji , J. 2003 J. Miller and J. Mukerji, (eds.), MDA Guide

Version 1.0, OMG Document: omg/2003-05-01,

http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf, May 2003.

14. Miralles, A. (2006). Ingénierie des modèles pour les applications

environnementales. PhD Thesis, Université des Sciences et Techniques du

Languedoc, Computer Sciences, 338 p.

15. Naiburg EJ., Maksimchuk, RA.: UML for Database Design, Addison-Wesley

(2001) 300 p.

http://sirs.scg.ulaval.ca/YvanBedard/publication/res2000.htm#258
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf

16. Pantazis, D., J.P. Donnay (1996). La conception SIG: méthode et formalisme.

Hermès, Paris, 343 p.

17. Parent, C., S. Spaccapietra, E. Zimányi (2006). Conceptual Modeling for

Traditional and Spatio-Temporal Applications: The MADS Approach. Springer,

466 p.

18. Priebe, T., Pernul, G.: Metadaten-gestützer Data-Warehouse-Entwurf mit

ADAPTed UML, 5th Int.Tagung Wirtschaftsinformatik (WI 2001), 19.-21.

September, Germany (2001)

19. Sowa, J.F Zachman J.A.:.Extending and Formalising the Framework for

Information Systems Architecture, IBM Systems Journal, Vol 31, No 3, 1992.

IBM Publication G321-5488

20. Thurston, J.: Geo-Visualisation : Current Issues / Future Potentials. GISCafe.com

(2001)

21. Tryfona N., R. Price and C. S. Jensen. (2003) Conceptual Models for Spatio-

Temporal Applications. Chapter 3 in Book: Spatiotemporal Databases: The

CHOROCHRONOS approach, Lecture Notes in Computer Science, Vol. 2520,

Springer-Verlag.

