Data Models and SQL for GIS

John Porter
Department of Environmental
Sciences
University of Virginia

Why Talk about Databases in a GIS Class?

- The goal of GIS is to analyze and display spatial data
- Vector data are almost always stored in some form of database
 - Raster data may be stored in special data structures
- Often we need to link non-GIS data to our data layers

Database Management System Types

- File system-based
- Hierarchical
- Network
- Relational
- Object-oriented

File-System Based

- •very simple and easy to set up
- inefficient
- few capabilities

Hierarchical

not very general e.g. phylogenetic geographical images

Network Database

- •very flexible
- •unwieldy to modify
- •not widely used

Relational Database

- •widely-used, mature
- •table-oriented
- •restricted range of structures

Object Oriented

Methods

Object Data Structure

Complex data structures, along with the methods to use the data are in the database

- •developing -few commercial implementations
- •diverse structures
- •extensible

Data Modeling

- DBMS Systems are highly flexible
- Good: they can do a lot!
- Bad: they have to be told how to do it!
- ◆A Database Management System is the CANVAS, the DATA MODEL is the painting......

Data Modeling

- Data modeling is used to develop the database structures used in a database
- Your data model effects
 - -reliability of the data
 - -efficiency and speed of queries
 - -the complexity of the database
- Data modeling is an art, not a science!

Some Terminology:

Tables contain attributes or fields (columns) and multiple observations or tuples (rows)

Spec_code	Genus	Species	Common Name
QRCALB	Quercus	alba	White Oak
QRCRBR	Quercus	rubra	Red Oak

Flat-file

Genus	Species	Common Name	Observer	Date
Quercus	alba	White Oak	Jones, D.	15-Jun-1998
Quercus	alba	White Oak	Smith, D.	12-Jul-1935
Quercus	alba	White Oat	Doe, J.	15-Sep-1920
Quercus	rubra	Red Oak	Fisher, K.	15-Jun-1998
Quercus	rubra	Red Oak	James, J.	15-Sep-1920

Normalization

- One widely-used approach for reducing errors within a database is to normalize your data structures
- Normalization is the process of eliminating duplicate or redundant information

Two-table Relational Database

Spec_code	Genus	Species	Common Name
QRCALB	Quercus	alba	White Oak
QRCRBR	Quercus	rubra	Red Oak

Spec_code	Observer	Date
QRCALB	Jones, D.	15-Jun-1998
QRCALB	Smith, D.	12-Jul-1935
QRCALB	Doe, J.	15-Sep-1920
QRCRBR	Fisher, K.	15-Jun-1998
QRCRBR	James, J.	15-Sep-1920

Complex Data Model

ArcGIS Databases

- The progenitor of ArcGIS, Arc/Infoused the "Info" database
 - Info is now obsolete, but is still included in ArcGIS Workstation for compatibility
 - Coverages are stored in Info data formats (hence the 'info' directory)
- ArcGIS now uses its own, built-in database based on Dbase IV (.dbf) formats

Using External Databases

- The major reason for using external databases is that there may be large amounts of useful data stored in non-GIS databases
 - Addresses
 - Detailed land cover characteristics
- Often these databases are maintained outside of a GIS using database tools (e.g., UVA Integrated System)
- Access to external databases reduces the need for redundant storage and eliminates issues of concurrency

Databases for ArcGIS

- There are a number of databases that can be used with ArcGIS and the "Spatial Database Engine" (ArcSDE)
 - Oracle powerful, but expensive
 - Microsoft SQLserver
 - IBM DB2
 - Informix
- Personal Geodatabases can use ACCESS
 - Not recommended for large applications

Structured Query Language

- So far, you've had the theory of databases, but how do you use them?
- The key to most modern databases (but NOT the INFO database) is called "Structured Query Language" or more simply, SQL (pronounced "seequel")

Why use SQL?

- Provides the tools needed to manage relational databases including:
 - -Creating Tables
 - –Adding Data
 - -Queries / Searches
- It's a STANDARD! multiple vendors produce products that support SQL queries

Standards – A Caveat

- Just because there are standards for SQL implementations does not mean that all databases will have all the capabilities in the SQL standard.
- Most relational databases implement some non-standard extensions or lack some features of the full standard

Examples of Variation

- MiniSQL implements only a critical subset of SQL commands
- MySQL fairly compatible no sub-selects (nested selects)
- Postgres not fully standardized, object extensions
- → "The wonderful thing about standards is that there are so many of them to choose from" - anonymous

Critical SQL Commands

- Table Management
 - -Create Table
 - Drop Table
- Editing
 - -Insert
 - -Update
 - Delete
- Query
 - -Select

There are many other commands, but these six will allow you to do almost anything you need to do

Create Table

```
CREATE TABLE mytable (
name CHAR(40) NOT NULL,
age INT)
```

- Creates a table named "mytable" with two fields
 - -A required character field called "name"
 - An optional numeric (integer) field called "age"

Insert

```
INSERT INTO mytable
  (name,age)
VALUES ('George',20)
```

- Inserts a data row into the table
 - -"name" is set to "George"
 - -"age" is set to 20

Select

```
SELECT name, age FROM mytable WHERE age = 20
```

Searches the table for rows where "age" is 20 and returns the associated name and age. This query resulted in:

Update

UPDATE mytable SET age=21 WHERE name LIKE 'George'

Searches the table for rows where "name" is "George" and sets age to 21. Note: if we had more than one row with name "George" all would be set to age=21.

Delete (a row from a table)

- DELETE FROM mytable WHERE
 name LIKE 'George'AND age =
 21
- Searches the table for rows where "name" is "George" and age is 21 and deletes them

Drop Table (delete a table)

DROP TABLE mytable

Completely eliminates table "mytable." All data in the table is lost.

Why SQL?

- Despite its power to manipulate data, SQL makes a poor user interface
 - Few ecologists will want to take the time to learn SQL
 - Effective use also requires knowledge of the underlying fields and tables
- For this reason, most SQL is imbedded into programs where it is hidden from the users

SQL in ArcGIS

- SQL syntax is used in several of the ArcGIS tools
 - SELECT BYATTRIBUTEgenerates anSQL query

Other SQL functions

- ArcGIS won't let you do updates etc. using SQL statements
 - That could damage what ArcGIS needs to do it's work
 - However, you can modify the data using the attribute CALCULATOR

Putting the Relations in Relational Databases

SELECT statements are not restricted to single tables. For example:

SELECT DISTINCT

mytable.age, yourtable.address

FROM mytable, yourtable

WHERE mytable.name LIKE yourtable.name

Multi-table selects create a "join"

Relational SELECT

```
SELECT DISTINCT
mytable.age, yourtable.address
FROM mytable, yourtable
WHERE mytable.name LIKE yourtable.name
```

- Accesses two different tables: "mytable" and "yourtable"
- Returns "age" from mytable, and "address" from yourtable where the "name" field in the two tables match.
- DISTINCT means that if the same age and address shows up in multiple rows, only the first instance will be displayed.

OK

Cancel

Environments...

<< Hide Help

SQL Exercise

Now it's time for you to try out your SQL skills using the web pages:

http://www.sqlcourse.com

http://www.sqlcourse2.com

-Do part 10 (table joins)